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Abstract—Sensory IoT (Internet of Things) networks are
widely applied and studied in recent years and have demonstrated
their unique benefits in various areas. In this paper, we bring the
sensor network to an application scenario that has rarely been
studied - the academic cleanrooms. We design SENSELET++, a
low-cost IoT sensing platform that can collect, manage and ana-
lyze a large amount of sensory data from heterogeneous sensors.
Furthermore, we design a novel hybrid anomaly detection frame-
work which can detect both time-critical and complex non-critical
anomalies. We validate SENSELET++ through the deployment
of the sensing platform in a lithography cleanroom. Our results
show the scalability, flexibility, and reliability properties of the
system design. Also, using real-world sensory data collected by
SENSELET++, our system can analyze data streams in real-time
and detect shape and trend anomalies with a 91% true positive
rate.

Index Terms—Internet of Things; Sensor Network; Anomaly
Detection

I. INTRODUCTION

Internet of Things (IoT) is made up of various devices

embedded with sensors, actuators and software which have

the ability to connect to each other or to the Internet. By

combining IoT devices together with an automated system, we

can build an IoT system to automatically collect and analyze

information and create outputs for different given tasks. Many

smart IoT systems are designed and deployed in different

areas such as agriculture, healthcare and building automation

for the purpose of monitoring and control process [1]–[3].

However, there are only a few IoT works (e.g., [4]) that

focus on embedding IoT systems into academic cleanroom
laboratories to enable a sensing platform that would provide

scalable, evolvable, secure and safe capabilities in a dynamic

cleanroom environment.

Generally, cleanroom labs are critical environments in-

cluding a variety of scientific instruments for semiconductor

fabrication and manufacturing of chips and are characterized

by various physical control factors such as temperature, hu-

midity, airflow, and airborne particles to ensure seamless op-

eration of high-end instruments. When compared to industrial

cleanrooms, academic cleanrooms have unique challenges and

requirements: (a) highly diverse research tasks conducted by

This research was funded by the NSF (award number 1827126). The
opinions, findings and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the view of the NSF.

researchers, (b) highly diverse users with knowledge expertise

ranging from novice students to experienced faculty and lab

managers, (c) highly diverse scientific equipment ranging from

microscopes such as Scanning Electronic Microscope (SEM)

to fume-hoods and pumps, (d) highly diverse missions ranging

from teaching undergraduate students to operating scientific

instruments in graduate research to develop new chips, (e)

diverse usage of equipment and machinery in terms of their

frequency and setups since students come and go and set in-

struments into different states as they conduct experiments, and

(f) constrained budget to maintain and repair these cleanroom

instruments.

Furthermore, it is challenging to design IoT systems for

academic cleanrooms that have the following requirements:

1. Environmental monitoring: Any violation of strictly

controlled environmental parameters such as particle density

and humidity may cause experiment failures. Using the semi-

conductor experiment as an example, under a high particle

density environment, dust particles are more likely to fall on

the silicon wafer and fail the whole semiconductor manufactur-

ing process. Besides the particle density, excess humidity will

cause the photoresist process for semiconductors to behave

unexpectedly which is highly undesirable as scientific results

may become invalid.

2. Instrument monitoring: There are diverse scientific

instruments in the academic cleanroom, including core instru-

ments such as the lithography system and auxiliary equip-

ment such as pumps in water cooling systems. An auxiliary

equipment failure may cause a chain effect and result in a

core instrument failure and a significant repairing expense. A

pump failure may lead to a water cooling system’s failure

and cause expensive instruments to overheat. By monitoring

via sensors (IoT devices) some parameters of the mechanical

equipment such as surface temperature, we can determine if

the equipment such as a pump is in a healthy state. The sensory

data can help us predict the failure of instruments and replace

the unhealthy instruments ahead to avoid cascading failures.

Additionally, we can monitor safety-critical instruments such

as fume-hood and HVAC systems to make sure that toxic gas

does not undermine the safety of researchers.

3. Security monitoring: We need to monitor (a) safety in

cleanrooms since students work with chemicals, (b) reliability,

integrity and availability of measurements since scientific
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instruments may interfere with sensing infrastructure, and (c)

entrances of cleanrooms to detect violated access to clean-

rooms for regulating the access control and protecting the

property in cleanrooms. Since privacy is not a first-class object

in academic cleanrooms, we only consider security, safety,

reliability, and availability of sensory data in this work.

Based on these requirements, we aim to address the follow-

ing challenges in academic cleanrooms:

• Scale and Heterogeneity: Due to the large scale and hetero-

geneity of sensors for various environmental and instrument

monitoring tasks, we need to (a) design new integrative

hardware methods to connect a large number of commodity

sensors with different interfaces and output formats to edge

devices in a highly reliable manner and (b) solve the power

problem.

• Flexibility and Evolvability: The environmental and in-

strument monitoring requirement will keep changing and

updating due to dynamic changes of cleanrooms’ settings,

which requires our sensory platform to evolve and expand

with new kinds of sensors and algorithms or replace sensors

and change the sensor layout.

• Availability and Reliability: High power machinery in

cleanrooms will interfere with the nearby wireless envi-

ronment violating instrument and environmental monitoring

requirements. For instance, interference will block the WiFi

signal and alerts will not be sent out in time. We need to

provide availability guarantees of the sensory data stream.

The IoT system should be designed in a reliable way to

extend the life-time.

• Effective and Efficient Anomaly Detection: We need to

carefully design an anomaly detection framework to satisfy

security monitoring requirements and to detect meaningful

anomalies from a large amount of sensory data streams with

the consideration of performance and latency.

To address the above challenges, we present SENSELET++,

an end-to-end low-cost and real-time IoT sensing platform for

smart cleanrooms with characteristics of scalability, flexibility,

reliability, availability, and integrity. To enable scalability, we

design a new set of interfaces and connectors for sensors and

edge devices based on 1-Wire protocol [5]. The new design

allows us to connect and power tens of heterogeneous sensors

to one edge device in a reliable way. We design hardware and

software of SENSELET++ in a highly modular fashion so

that we can easily add new kinds of sensors and algorithms

without large modification of the existing system, providing

flexibility and evolvability of the platform. Furthermore, we

carefully design the control software module running in the

edge device to realize the plug-and-play feature to increase

the flexibility. We separate the wireless part and sensing part

so that we can place the wireless part in a low interference

area of the cleanroom to secure availability.
We design two paths for achieving effective and efficient

anomaly detection. The quick path will detect critical anoma-

lies i.e., abnormal measurements (e.g., abnormal critical mea-

surements around water pumps, unusual fume-hood temper-

ature increase) with rule-based algorithms and run on edge

devices to minimize the latency between the generation of

anomalies and sending out alerts. The slow path will detect

non-time-critical anomalies where latency is not the first-class

object such as micro-climate anomalies and run on the cloud

server. We design a Singular Spectrum Analysis (SSA) [6]

based anomaly detection framework to extract meaningful

information from a large amount of sensory data. We make

the following contributions:

1) SENSELET++ Design: We present design of SENSE-

LET++, a low-cost, real-time, inclusive, evolvable (flexi-

ble), scalable, and secure IoT system for academic clean-

rooms. The design includes a unique hardware-software

co-design architecture to increase the IoT system’s scala-

bility, reliability, availability, and extensibility. We carefully

address each of these considerations in our design and to

the best of our knowledge, this is the first work towards

the design and implementation of a scalable end-to-end IoT

sensing and monitoring platform for academic cleanroom

environments.

2) Anomaly Detection Framework: We design an online

light-weight anomaly detection framework which can au-

tomatically detect abnormal events of changes in clean-

room’s micro-climate, safety and security from heteroge-

neous sensory data streams. Advanced anomaly detection

techniques are applied to real-time environmental and

contextual sensor data to identify sensor faults/variations

and environmental property fluctuations which significantly

help researchers and lab managers in academic cleanrooms.

3) Implementation and Evaluation: We validate SENSE-

LET++ in a semiconductor cleanroom. During the past sev-

eral months, we have extensively evaluated our system and

showed that the system meets our design goals. The system

has generated valuable information from the collected data

which helps the cleanroom administrator and researchers

to have new, useful findings of the cleanroom.

The paper is organized as follows. Section II surveys the

related work. Section III provides an overview of SENSE-

LET++ with its a) system architecture and data flow, and b)

system design responding to existing challenges in the aca-

demic cleanrooms. Section IV describes our anomaly detection

algorithms that provide integrity and improve performance in

SENSELET++. Section V presents the experimental results

from the deployed SENSELET++ in a real academic clean-

room. The paper concludes in Section VI.

II. RELATED WORK

In order to understand the need for an IoT infrastructure

in scientific cleanrooms, we explored the existing IoT sensing

solutions and their challenges in critical environments, current

sensory data acquisition systems, and sensor data analytics in

a networked system, discussed in detail as follows:

A. Indoor environmental monitoring in critical environments
Several previous works [7]–[10] have been steered towards

application-centric design of indoor air monitoring systems
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and CO2 sensors in cleanrooms for industries such as phar-

maceuticals, semiconductors, nuclear waste management and

logistics. However, these systems either require reconfigura-

tion in existing ventilation or air-conditioning units of the

room or are only limited to inventory and stock management

capabilities.

There are several commercial environmental monitoring

systems [11], [12] available on the market. These systems can

provide basic monitoring functionalities. However, it is hard to

add new kinds of sensors and anomaly detection algorithms

which are not supported by these systems. Also, their high

price is economically infeasible for academic IoT systems.

B. Data acquisition, management and modelling
Different data acquisition systems have been largely de-

ployed in IoT applications such as smart energy [13], smart

homes [14], agriculture [15], and airports [16] where sensors

are deployed to collect real-time data followed by different

processing techniques (such as rule-based approach) to gen-

erate periodic notifications and provide device management

schedules or surveillance. 4CeeD [17] focused on designing a

cloud-based data acquisition system in academic laboratories

that facilitates data collection, data sharing and data curation

services, and Miras [18] proposed a novel resource manage-

ment framework for such systems.

C. Data analysis and Anomaly detection
Recent studies [19]–[21] examine different machine learn-

ing methods (regression, LSTM, ANN, Isolation forest) on

wireless traffic data for anomaly detection used in a variety of

applications such as intrusion detection, fraud detection, data

leakage, sensor data tampering, link failures, and sensor faults.

However, they are restricted to univariate sensor data analysis.

In a situation with a more complex and critical environment

such as cleanrooms, a thorough analysis and investigation are

required to identify anomalous events/variations under differ-

ent types of sensors (i.e. multi-variate sensor data analysis

or sensor data fusion). Moreover, algorithms such as ANN,

LSTM and Isolation Forest are very computationally expen-

sive. They are not suitable for a constrained network of edge

computing devices. Different statistical models such as ARMA

[22] and Bayesian Changepoint [23] have also been explored

to address the problem of overfitting in machine learning based

anomaly detection algorithms and reduce the false positive

alarms efficiently. Another component of this work has been

done in contextual-based anomaly detection frameworks [24]

for environmental sensors, wherein the algorithm is made

contextually aware by using the meta-information (temporal

or spatial) associated with data points. While the contextually

aware algorithm was scalable and adaptable for real-time

detection, it required extensive sensor profiling with a large

amount of historical values collected from the same sensors.

III. SENSELET++

In this section, we will discuss hardware and network

architecture in SENSELET++ (Sec. III-A) and introduce our

system design overcoming the existing challenges for building

an IoT sensing platform in academic cleanrooms (Sec. III-B).

Fig. 1. SENSELET++ hardware and network architecture

A. System Architecture and Data Flow

Main components of SENSELET++ and their relations in

the whole architecture are illustrated in Figure 1.

SenseNode is a device used to generate single or multiple

sensory data streams. We introduce three types of SenseNode

in our design to support various sensing tasks. Wired SenseN-

odes are sensors used to collect various physical parameters

in the cleanrooms. These sensors are directly connected to

the SenseEdge by wires and cables. Wireless SenseNodes are

sensors directly connected to the SenseCloud through Wi-Fi

access points and are mainly used to detect push-based events

such as water leakage or door status change in places far

from power sockets. Finally, virtual SenseNode is a running

service in SenseCloud or SenseEdge layer used to collect

two categories of data: 1) public data such as weather data

from public datasets, and 2) network related statistics such as

bandwidth usage of a SenseEdge.

SenseEdge is the controller and a gateway for the wired

SenseNodes connected to it. It makes it possible for the

low-priced sensors to efficiently transmit their sensory data

to the SenseCloud. Moreover, SenseEdge runs a watchdog

service that handles various failures and supports the system’s

reliability.

SenseCloud is a server for collecting, storing and analyzing

sensory data. All components of SENSELET++ are pro-

tected from external attacks by the campus network firewalls.

Wireless SenseNodes and SenseEdges connect to the campus

network via nearby Wi-Fi access points while SenseCloud uses

Ethernet to connect to this network.

Figure 2 shows data flows in SENSELET++ and illustrates

how sensory data collected from different SenseNodes flows

and gets processed in the system before being stored and used

at SenseCloud. In Figure 2, the sensory data streams from

wired SenseNodes first flows into the SenseEdge. SenseEdge

uses a publish-subscribe messaging pattern to transfer data.

It then publishes the received data to the Message Queuing

Telemetry Transport (MQTT) broker [25] which handles mes-
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Fig. 2. SENSELET++ data-flow

sage transmission between SenseEdge and SenseCloud. In par-

allel, a rule-based anomaly detector running on the SenseEdge

will also examine the data and send alerts if it detects any

anomaly. Wireless and Virtual SenseNodes publish the data to

the MQTT broker directly. There exist two running programs

on the SenseCloud which subscribe to receive all the messages

in the system. The writer program is responsible to parse

the message and store this parsed message into InfluxDB,

which is a high-performance time-series database. Grafana,

an open-source data visualization tool, queries the data from

InfluxDB and visualizes the data within predefined dashboards.

The anomaly detection engine also listens to all the published

messages and detects anomalies in a timely manner. Next,

we will introduce the system design and discuss solutions to

handle existing challenges in academic cleanrooms.

B. System Design

We consider different challenges in designing an IoT sens-

ing platform for academic cleanrooms and make sure SENSE-

LET++ is: 1) scalable and flexible, 2) reliable and highly

available, and 3) capable of finding anomalies from large-scale

sensory data streams with a minimized latency and maximized

completeness. We will discuss each of these considerations in

detail.

Scalability and Flexibility. We consider both vertical and

horizontal scalability of SENSELET++. Vertical scalability

requires the system to easily upgrade the existing components

and handle more intensive tasks in the future. We choose

Raspberry Pi as the core of SenseEdge because it can easily be

replaced and upgraded. The vertical scalability of SenseNodes

is demonstrated by the ease of upgrading the sensor with better

characteristics such as accuracy or response time. To enable

this, we design SenseNodes in a modular way that separates

the sensor from other parts of the SenseNode. We then can

easily upgrade the sensor when needed.

Horizontal scalability requires that increasing the number

of SenseNodes will increase the total costs in a linear or sub-

linear function of the number of SenseNodes. This overall cost

includes the installation and operational cost of SenseNodes

and SenseEdges, bandwidth usage, as well as storage and

processing time of SenseEdges and SenseCloud. Due to the

lack of a unified and reliable interface needed to connect

and power heterogeneous sensors with the edge devices, there

exists a scalability bottleneck at the sensor and edge layer. We

Fig. 3. The diagram of the interface between a SenseEdge and SenseN-
odes and implementation results. A. Data-flow and power-flow between a
SenseEdge and a Temperature & Humidity SenseNode and their components.
B. Front-view of a SenseEdge (Top). Front-view of a SenseNode (Bottom-
left). Bottom-view of a SenseNode (Bottom-right) C. SenseEdge and SenseN-
ode in production environment.

design a new interface between SenseEdges and SenseNodes

as shown in Fig. 3-A to remove this bottleneck.

1) Interconnection interface: In the academic cleanroom,

tens of sensors need to be connected to a single edge device to

save space and reduce the cost. However, scalability is an issue

because the number of interfaces on each edge device limits

the number of connected sensors. We design a new interface

between the SenseEdge and SenseNodes to provide scalability.

The idea is to convert various output types1 into a uniform one.

We use 1-Wire protocol, a serial protocol with features

known as long-range covering (fits our academic cleanroom

size: 5m x 10m), simplicity, and low data rate requirements.

As shown in Fig. 3-A, each SenseNode has a dedicated bridge

chip to convert the sensor’s output type into the uniform

1-Wire protocol. The converted 1-Wire data stream is then

transmitted to the SenseEdge via the 1-Wire data bus. On the

SenseEdge, a bridge chip will convert the 1-Wire data stream

back to I2C stream for the reading of Raspberry Pi.

The power bus provides 3.3V and 5V power to SenseNodes

from the SenseEdge which itself is powered by abundant

sockets on the cleanroom walls. Connectors are used to

connect SenseEdge and SenseNodes. We use the modular

cable to connect two connectors as shown in Fig.3-C. Our

new interface allows us to connect heterogeneous sensors to

any connectors on the SenseEdge and chain sensors together

which increases the scalability and supports different types of

sensor network topologies.

2) Plug-and-Play design: Most cheap commodity sensors

are not automatically detectable and identifiable at the edge

level. Hence, people need to plan ahead what sensors each

edge device needs to connect and hard code the software

accordingly. This static design forces users to rearrange con-

nected sensors and redesign the software when a system

adjustment is needed, which is laborious and undesirable. The

plug-and-play design enables us to easily add, remove and re-

place SenseEdges and SenseNodes without any rearrangement

1Some sensors output analog voltage. Some sensors support serial commu-
nication buses such as I2C or SPI. Here we collectively call them the output
type.
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of the infrastructure. To make SenseNodes plug-and-play, the

SenseEdge needs to (1) detect the plug and unplug events of

SenseNodes; (2) identify the metadata of SenseNodes such as

the output type, the location and sampling rate; and (3) use

the dedicated API to read in and process the sensor data.

The 1-Wire bridge chip used in our new design can provide

a unique ID for each SenseNode. We collect the information of

currently connected sensors continuously from a folder in the

SenseEdge operating system where the 1-Wire bus driver lists

all the connected SenseNode’s ID. When a new SenseNode

plugs in, SenseEdge uses its ID to query the metadata database

(which has the metadata for all the SenseNodes we manu-

factured). This metadata then will be used by the SenseEdge

to update the sensor membership list. A thread will read the

data, detect the anomaly, and then publish the data to the

SenseCloud for each sensor in the membership list. When

the SenseNode is unplugged, it will be removed from the

membership list and related resources will be recycled.

Reliability and Availability. We take reliability as a very

important goal during the system design because a reliable

design can protect the system from various adverse factors

which are common in the complex academic cleanroom envi-

ronment or minimize the cost after the occurrence of failures.

We increase the reliability of our system by: (1) protecting

the system from possible adverse factors ahead; (2) making

the system automatically recovers after failures.

Some of the adverse factors can simply be avoided by

improving the system design. Interference from instruments

is the first one. Some instruments in cleanrooms can cause

electronic-magnetic interference resulting in wireless packets

loss between SenseEdges and other devices. This communi-

cation failure can delay or even lose urgent alert messages

which is highly undesirable because it violates safety and

security requirements. We solve the problem by measuring

the interference level at each location of the cleanrooms and

generate a map of interference regions, to move the SenseEdge

away from these regions. The wired communication between

SenseNodes and the SenseEdge is robust to the interference

and SENSELET++ can safely collect data from SenseNodes

in high interference areas. However, the design of traditional

wireless sensor network infrastructure, where the wireless

interface and the sensor of each sensing node are in a whole,

cannot easily deal with the interference as our solution does.

Another adverse factor that can be avoided is Hardware faults.
Due to the high-frequency usage of academic cleanrooms, in

a long-term deployment, there is a high probability for our

system to suffer from hardware faults like sensor or circuit

defects due to poor or loose protections. In the event of such

hardware faults, we will lose valuable sensor measurements.

Thus, to increase the reliability of the hardware, we have

designed: (1) circuit boards to support and connect electronic

components; (2) connectors to connect devices via cables

in a highly reliable way; (3) closures for SenseEdges and

SenseNodes to protect sensors and circuit board from water,

dust and accidentally touching from users in cleanrooms. The

implementation of these designs is illustrated in Fig. 3-B&C.

The above failure prevention methods do not guarantee

the reliability and we need an automatic system recovery
solution to recover devices after the occasional failures happen.

Our system can be seen as a distributed system where each

SenseEdge is a distributed node. After a node fails, we need

to detect the failure, fix the error and restart the node which

is a non-trivial process. A watchdog previously introduced in

[4] helps SENSELET++ to automatically reboot the device

when a failure occurs in the system. A timer will time out and

invoke a reboot if some hardware or software failures block

the program. This mechanism is found to be effective in the

past few months of deployment, and the system recovers from

failures autonomously with no human intervention.

IV. ANOMALY DETECTION IN SENSELET++

There are different types of time-critical and non-time-
critical sensing events in academic cleanrooms. We first

consider time-critical events and introduce a critical anomaly

detection pipeline in Sec. IV-A. We then consider non-time-

critical events and introduce our SSA-based anomaly detection

algorithms in Sec. IV-B to detect anomalies in these events.

Fig. 4. Anomaly detection data-flow

A. Critical Anomaly Detection

It is challenging to extract useful information with a large

amount of data in a real-time manner. We observed critical

anomalies are usually simple to be detected, so detecting them

does not require advanced algorithms and high computing

power, instead, minimizing the latency between the occurrence

of the anomaly and sending out the alert is the first priority.

Since the sensor reading time is relatively static and cannot be

fully optimized, the only opportunity to optimize the latency

is in data transmission and data analysis. We add an anomaly

detector for critical anomalies on SenseEdges to reduce the

delay as shown in Figure 4. The detailed data flow is shown

in the red path in Figure 4, we call this path the fast path. We

keep algorithms used in the SenseEdge as simple as possible

to reduce the data processing delay. The algorithms we used

are threshold-based algorithms. For example, we will identify

the environmental temperature reading as an anomaly if its

value is above 30°C. The threshold we used are suggested by

domain experts. We also add a fast re-sampling step to avoid

the false positive because we observed some sensors rarely

(once in a week) give extremely high or low readings. We

also proactively broadcast the alert to other devices in our

system to increase the success rate of sending out the alert.
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B. SSA-based Anomaly Detection

Besides critical anomalies, there are interesting or inno-

vative events happening in academic cleanrooms, which can

only be found by more complex algorithms on more powerful

servers. However, finding those anomalies are not urgent. We

call the data flow to find such anomalies as a slow path

as shown in the blue path in Figure 4. Those findings will

be used for helping lab managers and researchers to have

a better understanding of the cleanroom’s micro-climate and

operation. In order to find this useful information, we proposed

an anomaly detection framework based on SSA [6].

SSA Algorithm Description. SSA is a method that can

decompose a time series into several meaningful components

such as trend, periodicity and noise. Given a time series, where

N is the number of samples:

F = {f1, f2, ..., fN} (N ≥ 2) (1)

The first step of SSA is to form a set of lagged column vectors

Xi from F and use these vectors to build a trajectory matrix

X. Let L be the length of each lagged vector, 2 ≤ L ≤ N/2,
and K = N −L+1, the total number of lagged vectors. The

lagged vectors and the trajectory matrix are:

Xi = {fi, fi+1, ..., fL+i−1}T (1 ≤ i ≤ K)

X = [X1, ..., XK ]
(2)

The second step of SSA is to decompose the trajectory matrix

X with singular value decomposition (SVD). After applying

SVD, the trajectory matrix can be written into a combination

of d elementary matrices:

X = X(1) +X(2) + ...+X(d) (3)

where X(i) = σiUiV
T
i , i = 1, ..., d, and d is the rank of X.

The collection of {σi, Ui, Vi} is called the ith eigentriple of the

SVD, where σi is the singular value indicating the importance

of this eigentriple and Ui and Vi are corresponding left and

right singular vectors.

The third step is to use diagonal averaging to reconstruct a

time series component F̃i from elementary matrix X(i), where:

F̃i(n) =

⎧⎪⎨
⎪⎩

1
n

∑n
j=1 X

(i)
j,n−j+1 if 1 ≤ n < L

1
L

∑L
j=1 X

(i)
j,n−j+1 if L ≤ n ≤ K

1
N−n+1

∑N−K+1
j=n−K+1 X

(i)
j,n−j+1 if K < n ≤ N

(4)

X
(i)
a,b means the element at row a and column b of elementary

matrix X(i).

According to the linear nature of diagonal averaging and

math deduction:

F = F̃1 + F̃2 + ...+ F̃d (5)

In the last step, we calculate the w-correlation [26] and

automatically group F̃is into trend, periodicity and noise

components based on the correlation factor. After this step,

the original time series F can be written as:

F ≈ F̃ (Trend) + F̃ (Periodicity) + F̃ (Noise) (6)

Fig. 5. SSATriple example of a 1-hour segment of humidity time series

Online Anomaly Detection Framework. To make the SSA

algorithm work on data streams, we segment each sensor

stream with a sliding window with the width of W and the

step size of S and get the segment of data Fs,w, where s
is the index of the sensor and w is the index of the sliding

window. We apply SSA algorithm on Fs,w to get a SSATriple

SSAs,w = {F̃ (Trend)
s,w , F̃

(Periodicity)
s,w , F̃

(Noise)
s,w }, which is the

building block for our anomaly detection framework. As an

example, Fig. 5 shows the SSATriple of a segmented data

stream from a humidity sensor.

The idea of our anomaly detection algorithm is to find how

similar a target SSATriple, SSAtarget
s,w is to one or several

reference SSATriples, which represent the past or averaged

behavior. If they differ to some degree, we can conclude there

is an anomaly. Following this idea, the immediate problem to

be solved is: How to choose the reference SSATriples?
Intuitively, we want to compare the current reading with

the past reading. So, we choose SSATriple calculated in the

last sliding window as the reference SSATriple, denoted as

SSAtemporal
s,w . After we find proper reference SSATriples, the

second problem is: How to compare the target SSATriple
with reference SSATriples and find various anomalies? We

notice there is not a one-size-fits-all solution for this question

because comparing different components of an SSATriple or

using different comparison methods will lead to different types

of anomalies. Hence, we categorize anomalies into 2 groups

which are most important to cleanrooms. Below we describe

each of these two types of anomaly:

Fig. 6. Two kinds of anomaly we are interested in: (A) Short-Period Shape
Anomaly; (B) Long-Period Shape Anomaly; (C) Trend Anomaly;

From the collected data, we can find two kinds of Shape
Anomaly as shown in Fig.6-A&B. The shape anomaly usually

has a short duration (A) and is similar to noise. The sensor

reading will come back to normal after the anomaly disap-

pears. Sometimes we can observe long-period shape anomaly

(B) which has a unique pattern and are highly desired to be

detected. The trend of the sensor reading can change dramat-

ically as depicted in Fig.6-C. We name it Trend Anomaly.
We calculate shape and trend anomaly scores every time

when the sliding window slides one step ahead. Given the

target SSATriple of the target time series:

SSAtarget
s,w = {F̃ (Trend)

s,w , F̃ (Periodicity)
s,w , F̃ (Noise)

s,w } (7)
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and its temporal correlated SSATriple:

SSAtemporal
s,w = {F̃ (Trend)

s,w−1 , F̃
(Periodicity)
s,w−1 , F̃

(Noise)
s,w−1 } (8)

The shape anomaly score is the norm of the last S values of

the noise component of the target time series, where S is the

step size of the sliding window. From the experiment result,

the shape anomaly score is good at detecting short-term shape

anomalies.

ASShape =
∥∥∥F̃ (Noise)

s,w [(W − S) : W ]
∥∥∥
2

(9)

To detect long-period shape anomalies and trend anomalies,

we calculate the trend anomaly score by normalizing the

Euclidean distance between the trend components of two

SSATriples.

ASTrend =
1

Mean(F̃
(Trend)
s,w )

∥∥∥F̃ (Trend)
s,w − F̃

(Trend)
s,w−1

∥∥∥
2

(10)

An anomaly is identified if the anomaly score is above a

predefined threshold.

V. EXPERIMENTAL VALIDATION

In this section, we discuss the results of experiments we

have conducted to validate SENSELET++ and verify the

effectiveness of our design. We first introduce the test-beds we

built to perform experiments. To evaluate SENSELET++ in a

real environment, we implement and deploy it in an academic

semiconductor lithography cleanroom in Holonyak Micro and

Nanotechnology Laboratory (HMNTL) at the University of

Illinois at Urbana-Champaign. We deployed 16 SenseNodes

and 4 SenseEdges in this cleanroom to: 1) test the system

reliability (V-B), 2) check the latency and effectiveness of

critical anomaly detection module (V-C), and 3) collect data

for evaluating our SSA based anomaly detection framework

(V-D). Table I lists hardware details for all the devices placed

in the cleanroom. The SenseEdge uses Raspberry Pi Zero
W, which has a 1GHz, single-core CPU and 512MB RAM

and runs a Debian operating system. The SenseCloud in this

setting is a desktop computer with Intel(R) Core(TM) i7-2600

CPU @ 3.40GHz and 4 GB memory running Ubuntu 16.04.

Developed programs in the SenseEdge and SenseCloud are

written in Python and the network environment used by this

test-bed is the UIUC campus network. Part of the deployment

is shown in Fig. 7.

Fig. 7. Part of the SENSELET++ deployment. Three temperature and
humidity (T&H) SenseNodes, one surface temperature SenseNode, and one
airflow SenseNode are connected to a single SenseEdge device.

The second test-bed is a home-based setup to: 1) test

the scalability of SenseEdge (V-A), and 2) evaluate the per-

formance of the SSA-based anomaly detection (V-D). The

SenseCloud in this test-bed uses AMD Ryzen 5 3600 6-Core

Processor @ 3.60GHz and has 16 GB memory.

A. Scalability of SenseEdge

We connect a different number of I2C-based SenseNodes

(from 1 to 10) to a SenseEdge and monitor changes in CPU

and bandwidth usages to verify its scalability. We record the

metrics of each setting every second and for a period of one

minute, with a 0.5 Hz sampling rate and the result is shown in

Fig. 8. We use I2C based SenseNodes here because they are

more resource-consuming than other types of SenseNodes. The

result suggests that the CPU and bandwidth overhead increases

linearly with the number of SenseNodes and remains at a low

level. A scalable SenseEdge also guarantees the real sampling

Fig. 8. %CPU usage and bandwidth usage of a SenseEdge when it is
connected with different numbers of SenseNodes.

rate close to the required sampling rate. We set the required

sampling rate to 0.5Hz, which is a quite fast sampling rate and

faster than many sensors’ response time. We connected ten

I2C-based SenseNodes to one edge device and recorded the

time interval between two valid readings of each SenseNode.

The result illustrated in Fig. 9 verifies that the average real

sampling rate is close to 0.5Hz.

Fig. 9. The distribution of real sample intervals of each SenseNode when
the expected interval is 2 seconds. The data is collected from one SenseEdge
connected with ten I2C SenseNodes in one hour.

TABLE I
SENSELET++ HARDWARE DETAILS

Name Main Components Count Price ($)
Temp. & Humidity SHT85, DS28E17 8 35

Airflow D6F-V03A1, DS2438 3 30
Surface Temp. MLX90614ESF, DS28E17 2 20
Magnetic Door GF19002, DS2413 2 5
Water Leakage RCHWES4/U, DS2438 1 25

SenseEdge RaspberryPi 0-W, DS2482 4 25
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B. Robustness to the Wireless Interference

We test the wireless interference in cleanrooms and check

our design if it can easily increase the robustness to any

potential interference. We set up one SenseEdge in the fume-

hood (close to possible wireless interference) and another

one right outside the fume-hood where the point-to-point

distance between these two SenseEdges is less than 1 meter.

To control the variables, we don’t connect any sensors to

these SenseEdges and also make sure both are linked to the

same socket on the wall and have connected to the same

wireless access point. Each SenseEdge keeps sending data

to the SenseCloud to generate network traffic. We record

the network traffic bandwidth of each SenseEdge from 4 am

to 2 pm which covers the closing and opening time of the

cleanroom. Figure 10 shows the results of this experiment.

Fig. 10. Top graph shows the transmission rate of two SenseEdges. Bottom
graph shows the door sensor data of the cleanroom which can indicate the
occupancy of the cleanroom.

From the results in Fig. 10, we can find: (1) The interference

only happens at working hours, which can prove the wireless

interference is caused by some operations conducted in the

cleanroom. (2) The SenseEdge outside the fume-hood is robust

to the RF interference where its bandwidth is stable and never

drops to zero. This can prove that by taking the advantage

of our design, we can simply move the SenseEdge away from

the interference to avoid such interference. On the contrary, the

SenseEdge in the fume-hood which represents the traditional

wireless sensor has an approximate 0.6 hour downtime in the

10-hour experiment.

C. Critical Anomaly Detection

In this subsection, we test the accuracy and latency of our

critical anomaly detection pipeline. Critical anomalies are rare

in the real world, then we manually trigger critical events

around SenseNodes in order to gather enough data to validate

the design. We emulate four events for four different kinds

of sensors: (1) Fire events for the temperature sensor; (2)

Overheat events for the surface temperature sensor; (3) Water

leakage for the water leakage sensor; (4) Door open events

for the door sensor. End-to-end latency is averaged over ten

event invocations, recording the number of cases when the

system successfully detects the event. We define end-to-end

latency as the time when the SenseEdge invokes a sensor

reading until the alert arrives at the user’s server. Because some

events such as fire cannot be emulated in cleanrooms, we run

this experiment using the home-based test-bed. We increase

the network transmission delay accordingly (54 ms) to bring

our results closer to those measured values in the cleanroom.

Table II shows results in this experiment. It verifies the rule-

based algorithm is very effective and all critical events are

successfully detected. We also notice the end-to-end latency

introduced by the sensor reading, data processing, and network

transmission is fairly low which demonstrates our system can

detect critical anomaly detection in real-time.

TABLE II
CRITICAL ANOMALY DETECTION RESULTS

Event Alert Rule Success Rate Latency Mean ± Std. (s)
Fire > 30°C 10 / 10 0.23 ± 0.09

Overheat > 70°C 10 / 10 0.14 ± 0.04
Water Leak if True 10 / 10 0.29 ± 0.04
Door Open if True 10 / 10 0.09 ± 0.03

D. SSA-based Anomaly Detection

We randomly choose a 5-days long subset of our dataset

including two humidity time series and two temperature time

series. We preprocess the data by averaging the data in each

10s interval to remove noise. After the preprocessing, each

time series in the test dataset contains 43200 samples with a

sampling interval of 10s. The SenseCloud will read in the time

series continuously to emulate the online anomaly detection

procedure and output anomaly detection results which will

be compared with the ground truth. To obtain the ground

truth of anomalies, we visually inspect and label each time

series. We find similar patterns to the sample patterns shown

in Fig. 6 and label them with the corresponding anomaly types.

We label each anomalous event across a period of time and

call the period anomaly period. We choose sliding window

width W , sliding window step size S, and L, which is the

size of trajectory matrix X used in equation 2 based on

the characteristics of observed anomalies in cleanrooms. For

each combination of anomaly type and physical property, we

choose a threshold based on the historical observations. The

parameters used in the experiment are listed in table III.

We use number of false positives and number of false neg-
atives as our metrics to validate our algorithms. False-positive

means our algorithm falsely detected non-exist anomalies.

False-negative indicates our algorithm missed some anomalous

events. When the anomaly identified by our algorithm hits

an anomaly period, we consider the anomaly is successfully

detected. The result is shown in table IV. x/y means our

algorithms successfully find x anomalies out of y labeled

anomalies. False-negative count is equal to y − x. From the

result, we can find our algorithm has a high hit rate for both

shape and trend anomalies and have only a few false positives.

We carefully re-examine our dataset and find some false

positive reports are real anomalies but are missed during the

data labeling process. Figure 11 shows the detection result of

the time series of a humidity sensor placed in the fume-hood.

From the figure, we can find detected anomalies are highly

close to patterns that people will find interesting. The average

running time for each sliding window of each data stream is

68 ms with the parameters in table III. Considering the current
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TABLE III
SSA-BASED ANOMALY DETECTOR SETTING

Parameter Name & Symbol Value
Sliding Window Width W 180 samples (30 minutes)
Sliding Window Step S 30 samples (5 minutes)
Trajectory Matrix Size L 60 samples (10 minutes)
Anomaly Shape Threshold 1.5 (humidity); 0.125 (temperature)
Trend Change Threshold 0.15 (humidity); 0.08 (temperature)

TABLE IV
SSA-BASED ANOMALY DETECTION RESULT

Data Stream Shape Anomaly Trend Anomaly False Positive
Humidity 1 5/6 11/11 2
Humidity 2 1/2 9/11 1

Temperature 1 0/0 7/8 8
Temperature 2 14/14 4/4 1

Total 20/22 31/34 12

step size of the sliding window is 5 minutes, the SenseCloud

used in the home-based test-bed can process about 4000 data

streams before the updating deadline, which demonstrates

the scalability of our anomaly detection algorithm. Because

anomalies detected by SSA are not time-critical, the 5-minute

delay caused by the time-window step size is reasonable.

VI. CONCLUSION

We presented SENSELET++ for academic cleanrooms.

SENSELET++ helped the cleanroom managers and re-

searchers better understand the operation details of the clean-

room and allowed us to discover new challenges in sensor

networks within challenging academic scientific environments

such as their wireless interference, and other anomalies.
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