

SENSELET++: A Low-cost Internet of Things Sensing Platform for Academic Cleanrooms

Beitong Tian, Zhe Yang, Hessam Moeini, Ragini Gupta, Patrick Su, Robert Kaufman, Mark McCollum, John Dallesasse, Klara Nahrstedt

University of Illinois at Urbana Champaign

Internet of Things is everywhere, however

Smart Home

Smart Traffic

Academic Cleanroom

Why do we need IoT systems in Academic Cleanrooms

- Environmental Monitoring
 - Environmental parameters like humidity, temperature and dust around instruments need to be monitored and controlled to ensure the success of experiment

Why do we need IoT systems in Academic Cleanrooms

- Instrument Monitoring
 - By monitoring the temperature of the pump, we can determine if the pump is in a healthy state.
 - By monitoring the airflow of fume-hood and HVAC systems, we can make sure the toxic gas does not undermine the **safety** of researchers.
- Security Monitoring
 - By monitoring the door at the entrance, we can detect **violated access** to cleanrooms.

Upgrade Academic Cleanrooms is Challenging

Characteristics of Academic Cleanrooms

- Highly diverse research tasks conducted by researchers
- Highly diverse scientific
- Highly diverse users
- **Constrained budget** to build and maintain the IoT system in the academic cleanroom

Upgrade Academic Cleanrooms is Challenging

Technical Challenges

- Scalability and Heterogeneity
- Flexibility and Evolvability
- Availability and Reliability
- Effective and Efficient Anomaly Detection

SENSELET++ As The Solution: Hardware and Network

SENSELET++ As The Solution: Data Flow

SENSELET++ In Detail

Customized Interconnection Interface

Customized Interconnection Interface

SENSELET++ In Detail

System Design Goal Solution Customized Scalability and Interconnection Flexibility Interface Separated Design; Availability and Customized Closures; Reliability Watchdog Effective and Fast and Slow Path Efficient Anomaly Anomaly Detection Detection

SENSELET++ In Detail

Anomaly Detection

Fast path – For Critical Anomalies

Slow Path – SSA based Anomaly Detection

Α В 05:00 06:00 Singular spectrum analysis (SSA) is used to decompose a time series into **Trend**, **Periodicity** and **Noise** three parts.

 $F \approx \tilde{F}^{(Trend)} + \tilde{F}^{(Periodicity)} + \tilde{F}^{(Noise)}$

Slow Path – SSA based Anomaly Detection

Trend_i, *Periodicity*_i, *Noise*_i

 $Trend_{i-1}$, $Periodicity_{i-1}$, $Noise_{i-1}$

 $AS_1 = ||Noise_i[W - S:W]||_2$ (1)

$$AS_2 = normalize(||Trend_i - Trend_{i-1}||_2)$$
 (2)

Experimental Validation: Deployment

- We deployed 16 sensors and 4 edge devices in Holonyak Micro and Nanotechnology Laboratory (HMNTL) in UIUC.
- We deployed the SenseCloud in a computer science lab. The server uses i7-2600 CPU with 3.40GHz and 4 GB memory running Ubuntu 16.04.
- The system has run 8 months
- The system generated **new and useful** findings of the cleanroom.

Name	Count	Price (\$)
Temp. & Humidity	8	35
Airflow	3	30
Surface Temp.	2	20
Magnetic Door	2	5
Water Leakage	1	25
SenseEdge	4	25

Critical Anomaly Detection Results

- We emulate **four** events for **four** different kinds of sensors
- We repeat each events ten times to verify the effectiveness of the anomaly detection system
- We measure the time between the SenseEdge invokes a sensor reading to the alert arrives at the user's server as the alert latency

Event	Alert Rule	Success Rate	Latency Mean ± Std. (s)
Fire	$> 30^{\circ}C$	10 / 10	0.23 ± 0.09
Overheat	$> 70^{\circ}C$	10 / 10	0.14 ± 0.04
Water Leak	if True	10 / 10	0.29 ± 0.04
Door Open	if True	10 / 10	0.09 ± 0.03

SSA-Based Anomaly Detection Results

- We randomly choose 5days data to test the SSA-based anomaly detection system
- We manually labelled the anomalies in the chosen dataset.
- We use the number of false negatives and false positives as our metrics.

Data Stream	Shape Anomaly	Trend Anomaly	False Positive
Humidity 1	5/6	11/11	2
Humidity 2	1/2	9/11	1
Temperature 1	0/0	7/8	8
Temperature 2	14/14	4/4	1
Total	20/22	31/34	12

Scalability of SenseEdge

Robustness to the Wireless Interference

Conclusion

- We present design of **SENSELET++**, an IoT system for academic cleanrooms.
- We validate our system in a real academic cleanroom.
- The proposed system can also be used by academic community in other scenarios for long-term data collection.

Thank you!

(beitong2@illinois.edu)

Backup

Real Sample Interval

Critical Anomaly Detection Results

TABLE II CRITICAL ANOMALY DETECTION RESULTS

Event	Alert Rule	Success Rate	Latency Mean ± Std. (s)
Fire	$> 30^{\circ}C$	10 / 10	0.23 ± 0.09
Overheat	$> 70^{\circ}\mathrm{C}$	10 / 10	0.14 ± 0.04
Water Leak	if True	10 / 10	0.29 ± 0.04
Door Open	if True	10 / 10	0.09 ± 0.03

Parameters used in SSA-Based Anomaly Detection

TABLE III SSA-based Anomaly Detector Setting

Parameter Name & Symbol	Value
Sliding Window Width W	180 samples (30 minutes)
Sliding Window Step S	30 samples (5 minutes)
Trajectory Matrix Size L	60 samples (10 minutes)
Anomaly Shape Threshold	1.5 (humidity); 0.125 (temperature)
Trend Change Threshold	0.15 (humidity); 0.08 (temperature)

TABLE IV SSA-based Anomaly Detection Result

Data Stream	Shape Anomaly	Trend Anomaly	False Positive
Humidity 1	5/6	11/11	2
Humidity 2	1/2	9/11	1
Temperature 1	0/0	7/8	8
Temperature 2	14/14	4/4	1
Total	20/22	31/34	12