
Keys Your Account Goodbye: Semi-Targeted Password
Cracking via Keywords

Beitong Tian†

beitong2
Computer Science, PhD

beitong2@illinois.edu

Jaron Mink†

jaronmm2
Computer Science, PhD
jaronmm2@illinois.edu

Jason Liu†

jdliu2
Computer Science, PhD

jdliu2@illinois.edu

† = co-author

ABSTRACT
We present a novel method for password guessing driven
by keywords related to a particular service. By using these
keywords, the model is able to make more-informed guesses,
requiring fewer guesses than a completely general model.
However, unlike other targeted models, this model doesn’t
require private or personal information such as a user’s birth-
day or other leaked passwords. Using a set of keywords re-
lated to the service and prior known passwords from similar
services, we improve the percentage of guessed passwords by
up to 3% without any specific data from a particular user.

1. INTRODUCTION
Passwords have become the de facto mechanism for au-

thentication in modern society, and as such, the ability to
quickly guess a user’s password poses a grave threat to that
user’s security. Previous works in password guessing typ-
ically involve either a general non-targeted model that is
oblivious to the user base it is attacking or highly targeted
models that often require voluminous sets of private infor-
mation for specific users, such as their previously used pass-
words, birthday, etc. ([6],[10],[20],[22]).

While a general model can be freely used without any
prior knowledge, it often takes more guesses to successfully
find a password, because it cannot be specialized to a partic-
ular user. On the other hand, a highly targeted model may
require information that is inaccessible for various reasons.
We seek to create a middle-ground solution that is able to
apply public information to make an educated guess, thus
increasing guessing efficiency, but without requiring the use
of an individual’s private information. Specifically, we hy-
pothesize that users may include keywords which are related
to the service they are registering for as part of their pass-
words. For example, a user joining a football discussion
forum is likely interested in football and may include their
favorite teams or athletes as part of their password.

By somehow associating a service with some related key-
words, we can have the password guessing model make more
educated guesses without requiring private information.

In order to achieve this compromise, we utilize a pre-
trained untargeted LSTM neural network password guesser.
Using readily-available leaked password sets, we utilize trans-
fer learning to tailor the guesses to our target interest group.
We then create a simplistic keyword via human intuition of
the target user-base and re-sort the output of the guess-
ing algorithm via a probability-keyword weighing function.
With these two simple steps, we are able to increase the

percentage of guessed passwords of our offline guessing al-
gorithm by around 3% after 105 guesses from the current
state of the art [14] without incorporating any user-specific
information.

2. BACKGROUND

2.1 Untargeted Password Guessing Models
Untargeted password models are often trained from large

leaked password datasets such as RockYou [19] and Yahoo
[8]. A wide variety of password guessing models exist, which
vary in how they utilize this information.

Word Mangling models such as the infamous John the
Ripper [15] perform predefined text modifications on each
password within the supplied word list (such as capitalizing
the first letter or adding an exclamation point at the end).
Due to its simplicity and effectiveness, John the Ripper re-
mains a common tool within modern NetSec teams.

Probabilistic Context-Free Grammar models [21] as-
sume that certain password patterns are prevalent amongst
users (either due to password policy requirements or from
the habitual nature of humans). Utilizing these password
lists, on can automatically learn the probability of a certain
base structure such as S4D2 (describing a password with 4
alphabetic characters followed by 2 digits) and the probabil-
ity of productions such as P (D2 −→ 12) (i.e., the likelihood
of two sequential digits being 12). Beginning from the initial
start symbol, one can sequentially apply a set of productions
until a terminal string is created along with a correspond-
ing probability. By guessing the explored terminal strings in
descending probability, one can crack effectively guess pass-
words.

Neural Networks excel in their ability to learn complex
non-linear functions via a large set of inputs and outputs.
Advances in neural network architecture now allow for map-
ping based on both current and past input and have been
successfully used in applications such as text generation. As
researchers have recently discovered, this is heavily applica-
ble to the realm of password guessing [14]. Both deep neu-
ral networks and Markov Models guess the next character
based on some of the context of the previous characters [13];
however, deep neural network architectures such as LSTM
are generally much smaller than Markov Models and have
the ability to easily transfer knowledge amongst different
(but similar) tasks.

Whatever the guessing algorithm, each only utilizes infor-
mation gleaned from large and purposely general password

sets without consideration of the user base being attacked.
While this allows for great portability of a trained model,
it also ignores any user-base specific information that could
help improve the guessing efficiency.

2.2 Targeted Password Guessing
Most targeted models are untargeted models that have

been slightly augmented to prefer including a portion of
private information of a specific user that it is guessing
against. Some of these fields that prior work have consid-
ered utilizing include: First and Last Name, Email, Ed-
ucation/Work, Location of Residence, Birthday, Cell
Phone, Siblings, and Previous Passwords.

As Sun et al. have demonstrated, utilization of this infor-
mation in offline attacks can decrease guess count from 200
million to 500 thousand for the same number of correctly
guessed password and can result in x3-x6 more passwords
cracked in an online case where only 100 guesses for each
user are allowed [10].

While obviously valuable, much of this information is tra-
ditionally considered private and thus may not be possible
for an attacker to obtain. Furthermore, even if the informa-
tion is potentially obtainable, a substantial amount of effort
must be made by the attacker to collect each user’s informa-
tion, which could dramatically outweigh any potential ben-
efits the targeted algorithm presents. Thus to be useful, the
external information incorporated within a targeted attack
should ideally require little effort and be publicly available.

2.3 Recurrent Neural Networks
Recurrent neural network (RNN) is a popular neural net-

work architecture for sequence processing. Unlike the feed-
forward neural network such as convolutional neural network
(CNN), recurrent neural network will reuse the neural cell
along a time sequence. Its basic structure is a network with
a loop, which means its output of the network is fed back
to itself. If we unroll the recurrent neural network, we can
find its architecture is like a sequence of recurrent neural
network cells. Each cell learns from part of the sequence
and passes the knowledge to the next cell. The sequential
nature contributes to the recurrent neural network to be
the most efficient model for sequence processing. Besides
the vanilla recurrent neural network, researchers have cre-
ated many other variants of recurrent neural network such
as long short-term memory(LSTM)[9] and Gated Recurrent
Units(GRU)[7] to increase the performance of RNN.

2.4 Transfer Learning
While advances in machine learning algorithms have al-

lowed well-trained models to outperform the vast majority
of human crafted models and heuristics, these trained mod-
els are only particularly adept at the very narrow task for
which they are trained. The goal of transfer learning algo-
rithms is to utilize the well-learned features for a source task
and apply it to a new target task to improve performance.

Neural Network models have been shown to learn hierar-
chical sets of features within each layer [23]. Typically, the
beginning layers learn low-level features, while the higher
layers utilize these low-level features to create patterns that
eventually represent complex concepts. As an example, a
CNN trained on a categorizing animals will likely learn noisy,
simple shapes such as lines, curves, and textures within the
lower layers; conversely, the higher layers will learn how to

combine these patterns to form legs, bellies, heads, and ul-
timately a whole concept such as a cat near the top[23]. It
follows that transfer learning within Neural Networks usu-
ally involves freezing a subset of the lower layers while re-
training the higher layers. Intuitively, this reflects the idea
of maintaining the well trained low-level patterns that are
common amongst the source and target task while retrain-
ing the high-level patterns which differ between the specific
tasks.

Transfer learning is most applicable when the source task
is very well trained with a large amount of examples, while
the target task has a relatively low number of examples. Uti-
lizing the source via transfer learning allows for these well-
defined patterns to be used in a new context, and can lead
to a significant improvement compared to solely training on
the small number of examples from scratch. Additionally,
transfer learning is only helpful when the two domains share
underlying commonalities between each other. Furthermore,
a poor fit between source and target tasks can even lead to
degraded results. A principled method of determining what
tasks are transferable is still an area of active research.

3. THREAT MODEL
In this work, we assume an adversary who wishes to effi-

ciently perform an offline attack for a specific website whose
hashed user passwords have been stolen. We assume that
our adversary has public knowledge of the target interest
group at hand from which a set of related keywords can be
derived. This information can be gathered via publicly avail-
able knowledge graphs (such as YAGO[18], DBPedia [5], and
Google Knowledge Graph[17]), web scraping interest related
forums (such as Reddit or website-specific forums), or by
web scraping the targeted website itself.

Additionally, we assume that our adversary has a list of
prior leaked password sets of websites, some of which belong
to a similar interest group of our target. While this require-
ment may appear to substantially decrease the plausibility
of this attack, we argue that there is already a voluminous
amount of leaked password sets, the union of which form
a nearly complete set in terms of their interest relevance.
For example, “Have I Been Pwned” tracks over 9 billion
passwords from 417 different websites as of December 16[3].
Everything from real estate sites to religion-specific dating
websites[3] has seen breaches, and thus an attacker would
not have an issue finding a marginally related prior leaked
password set.

With that in mind, in future work, we do intend to explore
a weaker threat model that only utilizes publicly available
knowledge of interest groups via web scraping and thus al-
leviates this assumption.

4. METHODOLOGY
Our guessing system has three main sub-models as shown

in Figure 1: (1) sequence deep neural network model; (2)
targeted transfer learning model; (3) targeted sorting model.
In the following subsections, we will introduce those models
into details.

4.1 Neural Network Model
Our system skeleton is a recurrent neural network(RNN)

model. RNN is a suitable model to process sequential data,
such as text streams. Among RNN models, we choose to use

2

Figure 1: System diagram. Our guessing system has three
main components. The first one is a pre-trained LSTM
model, and we denote the guessing list generated by this
model by baseline list. The second part is a transfer learn-
ing model with the leaked password dataset as the trans-
fer training data. We denote the guessing list from this
model by transfer list. The last part is the sorting mod-
ule. The input of this sorting module is transfer list and
keyword list generated from keyword generating module
and the output is our guessing list: our guessing list

a long short-term memory model(LSTM). LSTM leverages
some memory gates to memorize the context of a specific
piece of string, that can benefit the usage of context infor-
mation for guessing. We use pairwise passwords to train
the LSTM to make our model understand and learn how to
compose a password. In the guessing process, we will feed
a random noise to the model, and the model will generate
a password with its probability. We sort the guessed pass-
words based on the probability and get a general guess list.
The performance of the LSTM model depends on many fac-
tors, such as the layer number, the size of the hidden layer,
the size of the training data, etc.

Limited by the computation source, we choose to use a
CMU’s pre-trained model[14]. We tried to build our LSTM.
Limited by the computation source, our LSTM model has
only one LSTM cell layer, 128 hidden states for each hidden
layer, and we trained this model with only 100 thousand
passwords. The performance of this LSTM is not satisfied.
CMU pre-trained LSTM model has three LSTM cell layers,
1000 hidden states for each hidden layer and the author of
this model uses 150 million general passwords to train this
model. This model is proved to have a good performance on
general password guessing.

4.2 Transfer Learning on Similar Datasets
The second component of our method is a transfer learn-

ing model. We want to modify the bias of passwords guessed
by our guessing model. We want to freeze the weights of
low layers to maintain some most basic guessing knowledge
learned from the general training dataset. For example, dur-
ing the general training, the model has already learned some
frequent transformations for passwords such as changing s to
$ and some most frequent sub-words used in passwords such
as 123 and qaz, etc. After freezing the weights in the lower
layer, we will retrain our model with a new targeted train-
ing dataset, such as a password list with a specific topic or a
keyword list for one interesting area. Transfer learning can

benefit our targeted guessing system in two folds. Firstly,
it can increase the probabilities of those related passwords,
which has already in the general guessing list. Secondly,
transfer learning can help our model to generate more new
passwords related to our targeted topic. We find the CMU
password guessing system provides a transfer learning API
for future learning. After comparing their implementation
and our ideas, we choose to use their transfer learning API.

4.3 Sorting Algorithm
The last part of our guessing system is a sorting module.

We observe the guessing process of the neural network is
hard to control. We cannot easily control the influence of
transfer learning on the original model.

One method is that we can try to use different hyper-
parameters of transfer learning and use different transfer
training dataset to retrain our model and refine our guess-
ing model. But retrain a model is resource-consuming, and
the retraining process is still a black-box process.

Our method is to add one more sorting module at the
last of our system. We will resort the password guessing list
based on the sort weight of each password as shown in Eq
1.

W (pwi) = α×Prob(pwi) + (1−α)×Cor Bonus(pwi) (1)

In equation 1, we use the original guessing probability
and correlation bonus value to represent the sort weight for
each password. α is the parameter to weight the original
probability and the correlation bonus value. If we want to
put more weights on the original model guess results, we can
set a higher α. If we want to list those passwords which are
more correlated to our targeted topic, we can set a lower α.

The original guessing probability of the password means
how probable our transfer learning model guesses out this
password. We directly use the probability generated from
our model and use Z-score function(Eq 2) to normalize the
probability and get Prob(pwi) as shown in Eq 3.

Z(xi) =
xi − x
s

(2)

Prob(pwi) = Z(Proboriginal(pwi)) (3)

The correlation bonus value shows the correlation between
the password and our targeted topic. We use the mini-
mum password-keyword Levenshtein distance to represent
this value. And we use min-max algorithm to normalize the
result as shown in Eq 4.

Cor Bonus(pwi) = min
kwi∈keywords

(Levenshtein(pwi, kwi))

(4)
The keyword list contains many relevant words and termi-

nology commonly used within the user base community. For
example, if our targeted topic is an animal shelter, the key-
word list should contain many pet related terminology such
as dog, cat, bearded dragon, woof, meow, and such. The
generation of the keywords are described in the following
subsection (4.4).

The Levenshtein distance algorithm is a classical algo-
rithm to calculate the distance or dissimilarity between two
sequences. In our model, we use this algorithm to calcu-
late the distance between two strings: the keyword and the
password. To be more precise, we want to use the Leven-
shtein distance algorithm to check if the password contains

3

the keyword or part of the keyword. During our research,
we found the length difference between the keyword and the
password will generate undesired results. For example, the
Levenshtein distance between dog123456 and dog is 6. The
Levenshtein distance between car and dog is 3. If we use the
original Levenshtein distance algorithm, we will wrongly as-
sume car is more related to our keyword dog than dog123456.
In order to remove the influence of length, we add a normal-
ize factor in the original Levenshtein distance algorithm, as
shown in Eq 5.

Levenshtein(a, b) = Lev(a, b)/abs((Len(a)− Len(b) + 1))
(5)

After calculating the sorting weight for each password, we
will sort the guessing list based on the weight and generate
our final guessing list.

4.4 Keyword Generation
In order to re-sort the guesses, a list of relevant keywords

must be generated. The keywords should ideally represent
a set of terminology which is used by the interest group
in a higher frequency than normal parlance. Conceptually,
the sorting algorithm should utilize these keywords and re-
arrange the guessing list to one that is consistent with the
frequency of certain these keywords and phrases within the
targeted password set.

For this iteration of our work, we discovered a list of key-
words via human intuition of the subject at hand. In the
case of Neopets (a game in which you play and raise a vir-
tual pet), we utilized a list of consisting of the following: the
word ”neopets”, a Wikipedia list of common animals [1], and
a list of the fictitious species of animals within the game [2].
Unfortunately there are many pitfalls with such a manual
method. First, it is hard to validate if the added keywords
are relevant. Second, it is easy to exclude potentially useful
keywords. Third, any efficiency benefits that one can re-
alistically obtain via keyword sorting can easily be lost via
manual effort.

Fortunately, there has been considerable research done on
keyword discovery within text mining [11] [12] [16] . Ideally,
similar algorithms can be used on the text found by web
scraping the victim website or forums related to the interest
group. Not only would such an algorithm allow for meaning-
ful words to be automatically discovered via metrics like TF-
IDF but one can also numerically estimate how important
individual keywords are. Given individual keyword weights,
one can potentially perform a sorting algorithm that is based
both on the probability to keyword weighing factor α, and
the keyword prevalence factor β =TF-IDF. However, this is
left as future work.

4.5 Other Possible Sorting Algorithms
During the research, we also come up with some other

sorting algorithm. Instead of weighting the original prob-
ability and the correlation bonus, we try to use only the
correlation bonus to sort the guessing list bins. We first sep-
arate the guessing list into several bins. For example, we
separate the 105 length guessing list into ten bins so that
each bin contains 104 guesses. Then, we use the correlation
bonus value of each password as the sorting weight to resort
to each bin. This method will make sure the password in
bin#1 will never fall into other bins like bin#5, which keeps
the original guessing order between bins. We can change the
bin size to adjust how much do we want to keep the origi-

nal order. This sorting algorithm is gentler compared to the
sorting algorithm we discussed in Section , and it is a more
general version of the algorithm in Section if we set the bin
size to 1. Based on our result, we abandoned this algorithm.
We also tried to bin the guessing list in an exponential way.
For example, the nth bin contains 2n guesses. The result is
also not better than the algorithm in section . So, we don’t
consider these algorithms in later experiments.

5. EVALUATION AND DISCUSSION

5.1 Effect of Transfer Learning
We compare the guesses generated by the model after

transfer learning on various password sets. We picked datasets
from three different “genres” of password sources: Neopets
and Neofriends, AbuseWithUs and CrackingForum, and Mate1
and iChatUSA.

Neopets is a site featuring games and “neopets,” or virtual
pets. Neofriends is a discussion forum specifically about
Neopets. AbuseWithUs and CrackingForum are both dis-
cussion forums about hacking or cracking accounts in gen-
eral. Mate1 and iChatUSA are online dating sites.

Based on our hypothesis of password similarity, we ex-
pected models trained within one genre to perform better
within its own genre than across other genres. However, as
seen in Figure 2, this is not what we observed. Instead,
the relative performance of each model was essentially un-
changed across all targets, with the Neopets model signif-
icantly outperforming all other models (including the gen-
eral baseline model) on all targets. Curiously, Mate1 always
performed the most poorly, even when attacking its own
dataset. (The datasets were partitioned into training and
testing sets, so this does not mean that Mate1 was directly
attacking its own training data.)

These results raise many key questions. Why is the Neopets
model so much better at guessing than any other model, and
why is Mate1 so much worse? What are the fundamental dif-
ferences between the password lists? While the results might
suggest at first that there is no real similarity across genres,
there are clearly characteristics of passwords within each set
that makes them more or less favorable to the overall per-
formance of the model. For example, on manual inspection,
the dataset for Mate1 contains many email addresses, while
no other dataset really contains any email addresses. We
hypothesize that the transfer learning methodology we ap-
plied significantly hurt the performance of the Mate1 model
– namely, freezing the features of the baseline model likely
prevented the model from adjusting its features to better fit
Mate1 passwords. For example, we observed in the Mate1
guesses that it never chose to guess anything email-like (not
a single ‘@’ appeared in the guesses) – despite the relative
prevalence of emails in the training data. There is still sig-
nificant work to do on both selections of training data and
the actual transfer learning methodology for the models.

While keeping these pitfalls in mind, we do observe some
semantic differences in the passwords guessed by each model.
The very first guesses (within 100 or so) are typically the
same across all models, containing passwords such as pass-

word, princess, iloveyou, and 123456. Curiously, Mate1 is
missing this last example, and instead has some less frequent
numbers (such as 345678) as well as some strange characters
(such as :::::::: or ;:987653). There are a few colons
and semicolons in the training data, but not many; most

4

(a) Target: Neofriends

(b) Target: mate1

Figure 2: Comparison of guesses from models trained on dif-
ferent datasets. Each graph shows the performance of the
models when attacking a particular password set. The base-
line on each graph is the general model, while each other line
shows the performance of a model that underwent additional
transfer learning on the specified dataset. See Appendix A
for more examples.

semicolons are due to HTML encodings, such as in ilove-

dogs&me1. This may be another feature that the model
was unable to learn due to freezing that caused its degraded
performance. Around 1000 guesses are when more signifi-
cant divergences appear – Mate1 tends to guess names such
as madonna or melisa slightly earlier than Neopets, while
Neopets guesses animals such as turkey or dragon1 slightly
earlier. However, we do also observe that the guesses from
each model do not actually differ by a great margin. Ad-
justing the method to guess more targeted results (and thus
further differentiate each model) could lead to more inter-
esting results. Additionally, due to restricted computing
power and time, we restricted the size of the training sets
for AbuseWithUs, iChatUSA, and Mate1 to a small subset

of the original dataset size (∼10000 passwords). A more fair
comparison may require larger training sets.

5.2 Effect of Keyword Sorting
We next consider the performance of guesses before and

after sorting based on keyword similarity. Based on our
general observations that around 10% of passwords have
some relation to the dataset (and thus to the keywords),
we choose α = 0.9. Testing other values of α shows that
the performance is not significantly affected for α around
0.9, while lower values of α (which put more weight on key-
word similarity) generally reduces the effectiveness of the
model, as seen in Figure 3. Looking at the order in which
passwords are guessed as α changes, we see that for lower α
such asα = 0.3, the model tries too hard to guess passwords
that are “related” and misses the common “easy” passwords,
such as 123456789 or password.

Figure 3: Comparison of guesses generated by the baseline
model, Neopets transfer model, and Neopets transfer model
with sorting when attacking Neofriends passwords.

Figure 4 shows the effect of sorting on the guessing perfor-
mance of the Neopets model. Sorting is able to slightly boost
the guessing performance as the model guesses more correct
passwords slightly earlier. However, there is ultimately not
a very significant gain in performance from the näıve Lev-
enshtein sorting method. A continuation of this work would
be to investigate better keyword correlation metrics. Lev-
enshtein distance does not include any notion of semantic
similarity; it only favors guesses that happen to “look like”
the keywords, even if they have no real semantic similarity.
For example, the guess list for Neopets with α = 0.3 guessed
trigger fairly early, partially because the distance between
trigger and tiger is 2; the words look very similar. On
the other hand, they have no real semantic similarity. Four
targets in the Neofriends testing set include tiger: tigers,
tiger4505, whitetiger, and neontiger, but trigger does
not appear in the testing set at all.

5.3 Evaluation of Keyword Sets
The keywords in the previous sections were generated rel-

atively arbitrarily, as aforementioned in methods. We seek
to address two questions here:

5

Figure 4: Comparison of guesses generated by the baseline
model, Neopets transfer model, and Neopets transfer model
with sorting when attacking Neofriends passwords.

1. How well would our model perform if we had an “ora-
cle” keyword set that perfectly encapsulates the target
set in as few keywords as possible?

2. How well does our arbitrarily-selected keyword set re-
late to the target password set?

We address this by creating modified target sets. In each
modified set, we take the testing password list and sort it ac-
cording to our keyword similarity metrics. We then output
target sets that contain X% passwords that are strongly-
similar to the keyword set. In Figure 5, we then compare
the results from attacking each modified set with our sorted
guess list. As expected, the performance of the model im-
proves as the target set becomes more similar to the keyword
set. The unfiltered set is simply the target set unmodified;
it is between the 0% and 5% lines, but significantly closer
to 5%, suggesting that our näıve keyword list covers about
4% or so of the target set.

The general shape of these curves indicate that with a bet-
ter keyword set, the performance of our password guessing
model could be significantly improved; interestingly, there
appear to be significantly diminishing returns between 50%
keywords and 100% keywords. Part of this is also due to ex-
perimental error – there are only so many passwords in the
original Neofriends set that are actually strongly related to
the keywords, so the “100%” related set may struggle to find
related keywords. Additionally, as mentioned before, the
notion of relatedness is purely from Levenshtein distance in
this paper, while we are actually seeking semantic similarity.
Given a better keyword similarity metric, it may be possible
to adjust the curves, so they have more of a concave-down
asymptotic appearance rather than concave-up (i.e., aim to
successfully guess passwords earlier). The aim is to more
rapidly guess the related passwords until the model runs out
of good targeted guesses and resorts back to more generic
guesses.

6. RELATED WORK

Figure 5: Comparison of guessing performance versus the
keyword presence in the target set. Here, the guesses are
generated from the Neopets model, and the target sets are all
variations of the Neofriends password sets (adjusted to have
more or fewer passwords strongly related to the keywords).

AlSabah et al. observed general traits of passwords used
for a Middle Eastern banking service.[4] While they classi-
fied most passwords as keyboard patterns (i.e., passwords
formed by character sequences influenced by keyboard lay-
outs), they also found that some common words appear rel-
atively frequently in passwords, such as qatar (0.5− 1.5%,
depending on the user’s primary language) or the bank’s
name itself (0.6%). Names also appeared in about 25% of
passwords. About 80% of passwords were a string of char-
acters followed by some digits. Finally, they did observe
notable differences in the passwords depending on a user’s
primary language. For example, almost 4% of Arabic users
included their phone number in their password, while only
about 0.06% of English users included their phone number.
Although a banking service is not associated with any ob-
vious interests, these results do show that some amount of
related keywords (such as the bank’s name) may still appear
within the password.

Castelluccia et al. were one of the first to and exploit
the relationship between user PI and password construction
with a method they named “OMEN+”.[6] Utilizing a 3-gram
Markov model to guess the most probable next character.
By assigning the transition and initial probabilities to ap-
proximate bucket levels, OMEN is able to guess passwords
ordered by their approximate decreasing probability. The
authors then utilized publically-available user PI by associ-
ating their registered email with their Facebook account and
retrieving their first and last name, username, friends, ed-
ucation/work, contact info, location of residence, birthday,
and siblings. By boosting PI associated character grams
with their corresponding usage seen in the password set,
they were able to improve their password guessing perfor-
mance up to 5% at 100 million guesses.

Sun et al. developed a method they call“Personal-PCFG,”
which essentially uses a grammar to structure passwords,
then guesses by filling in characters according to the gram-
mar.[10] Their “Personal-PCFG” extends the typical PCFG

6

grammar of letters, digits, and symbols with personal in-
formation, such as a user’s name, email address, cell phone
number, etc. Targeting a Chinese railroad site, they ob-
served that almost 60% of passwords contained some per-
sonal information. In terms of password structure, they also
observe that Chinese passwords tend to consist mostly of
digits, and are often keyboard patterns as well.

Wang et al. [20] develop a PCFG based targeted password
cracking framework TARGUESS. TARGUESS embeds var-
ious personal information(PI) such as username, birthday
and cell number, etc. into several tags. Unlike the length-
based tag used by Li et al., TARGUESS develops a type-
based tag system(tag B for Birthday, tag N for the name).
The subscript variable for each category’s tag restricts a
specific format for the information. For example, B3 repre-
sents Birthday in MDY format, and B4 means Birthday in
YMD format. TARGUESS can also leverage the previous
password, and some categorical information like language,
gender to improve the guessing performance. Wang can use
detailed PI for each user to shrink his PI dictionary while we
only have a general service topic and related words which can
be easily obtained from public resources. We have a more
challenging threat model than Wang.

7. OPEN PROBLEMS
Now we are generating keyword lists with our heuristics

of the targeted topic. In future work, if we want to make
our system generalized for other topics, this method is not
feasible anymore. We need to develop a new method to gen-
erate keyword lists, such as using web-crawling techniques
automatically. We also want to give each keyword a score
to show the relevance between the keyword and the tar-
geted topic. For example, if our guessing topic is pet, dog is
more probable than chinchilla to be chosen as a part of the
password. We can use this additional score to improve the
accuracy of our similarity metric.

Currently, we are using the minimum Levenshtein dis-
tance algorithm to calculate the similarity between the pass-
word and the keyword. This method is effective but may not
be the best distance metric. We can try to use some machine
learning models to calculate the distance semantically.

There are also issues with the transfer learning method we
use, as mentioned in the evaluation and discussion. Some
datasets result in severely degraded performance, poten-
tially because they contain features that are not captured
by the baseline model. Because the current transfer learn-
ing method freezes the feature layers, the model is unable
to properly learn from the training set, resulting in poor
guesses. We still need a better method to apply the prior
knowledge from other datasets (or ideally, even from a key-
word list) to the password guess generation step from the
model.

8. CONCLUSION
We show that there are still many possible improvements

to neural network password guessing models, and that a
semi-targeted model that guesses passwords based on some
prior knowledge of a general service is potentially feasible,
but requires additional work. There is some performance
gain from training on passwords from a related dataset (e.g.,
from Neopets and attacking Neofriends), but there are still
pitfalls to address regarding the effect of the training data

on the resulting model. Furthermore, the transfer learning
methods used in this study seem to have limited effectiveness
because the features learned from the baseline model may
not completely capture the transfer learning training set.
Regardless, there is some promise in the theoretical perfor-
mance of a model with an oracle keyword set that could learn
perfectly even using our näıve keyword similarity metrics.

9. ACKNOWLEDGMENTS
We extensively used Melicher et al.’s open-sourced pass-

word guessing model as our baseline model and for transfer
learning[14]. We also thank Gang Wang for his input and
guidance during this project.

10. REFERENCES
[1] List of animal names.

https://en.wikipedia.org/wiki/List of animal names.

[2] Neopets wiki.
https://neopets.fandom.com/wiki/Neopets Wiki.

[3] Pwned websites.
https://haveibeenpwned.com/PwnedWebsites.

[4] M. AlSabah, G. Oligeri, and R. Riley. Your culture is
in your password: An analysis of a
demographically-diverse password dataset. Computers
& Security, 77:427 – 441, 2018.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. In K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika,
D. Maynard, R. Mizoguchi, G. Schreiber, and
P. Cudré-Mauroux, editors, The Semantic Web, pages
722–735, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[6] C. Castelluccia, A. Chaabane, M. Dürmuth, and
D. Perito. When privacy meets security: Leveraging
personal information for password cracking, 2013.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio.
Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[8] D. GOODIN. Hackers expose 453,000 credentials al-
legedly taken from yahoo service., July 12, 2012.
http://arstechnica.com/security/2012/07/
yahoo-service-hacked/.

[9] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[10] Y. Li, H. Wang, and K. Sun. A study of personal
information in human-chosen passwords and its
security implications. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on
Computer Communications, pages 1–9, April 2016.

[11] Z. Li, D. Zhou, Y.-F. Juan, and J. Han. Keyword
extraction for social snippets. In Proceedings of the
19th international conference on World wide web,
pages 1143–1144. ACM, 2010.

[12] Z. Liu, X. Chen, and M. Sun. Mining the interests of
chinese microbloggers via keyword extraction.
Frontiers of Computer Science, 6(1):76–87, 2012.

[13] J. Ma, W. Yang, M. Luo, and N. Li. A study of
probabilistic password models. Proceedings - IEEE
Symposium on Security and Privacy, pages 689–704,
11 2014.

7

[14] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri,
L. Bauer, N. Christin, and L. F. Cranor. Fast, lean,
and accurate: Modeling password guessability using
neural networks. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 175–191,
2016.

[15] A. PESLYAK. John the ripper, 1996-.
https://www.blog.google/products/search/
introducing-knowledge-graph-things-not/.

[16] S. Rose, D. Engel, N. Cramer, and W. Cowley.
Automatic keyword extraction from individual
documents. Text mining: applications and theory,
1:1–20, 2010.

[17] A. Singhal. Introducing the knowledge graph: Things,
not strings, 2012. https://www.blog.google/products/
search/introducing-knowledge-graph-things-not/.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW
’07, pages 697–706, New York, NY, USA, 2007. ACM.
http://doi.acm.org/10.1145/1242572.1242667.

[19] A. Vince. If your password is 123456, just make it
hackme, January 20, 2010. http://www.nytimes.com/
2010/01/21/technology/21password.html.

[20] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang.
Targeted online password guessing: An
underestimated threat. In Proceedings of the 2016
ACM SIGSAC conference on computer and
communications security, pages 1242–1254. ACM,
2016.

[21] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In 2009 30th IEEE Symposium on Security
and Privacy, pages 391–405, May 2009.

[22] M. Zhang, Q. Zhang, W. Liu, X. Hu, and J. Wei. A
systematic targeted password attacking model. ksii
transactions on internet and information systems. In
KSII Transactions on Internet and Information
Systems, vol. 13, no. 5, pages 2674–2697, 2019.

[23] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S.-C. Zhu.
Interpreting cnn knowledge via an explanatory graph,
2017.

APPENDIX
A. ADDITIONAL RESULTS

(a) Target: CrackingForum

(b) Target: AbuseWithUs

(c) Target: iChatUSA

Figure 6: Comparison of guesses from models trained on dif-
ferent datasets. Each graph shows the performance of the
models when attacking a particular password set. The base-
line on each graph is the general model, while each other line
shows the performance of a model that underwent additional
transfer learning on the specified dataset.

8

