
Providing Performance SLO Guarantees for
Multi-tenant Serverless Computing

Haoran Qiu, Beitong Tian, Ragini Gupta

University of Illinois at Urbana-Champaign

{haoranq4,beitong2,raginig2}@illinois.edu

Abstract
Serverless computing, as a way to construct the services

that enable developers to build more agile applications so

they can innovate and respond to changes faster, has been

heavily invested by all major cloud providers in the form of

Function-as-a-Service (FaaS). In contrast to traditional cloud

service architectures, the application logic written by the

developers is running in stateless compute containers that

are event-triggered, ephemeral, and fully managed by the

cloud providers. However, the unique characteristics of FaaS

workloads make the performance predictability challeng-

ing. No cloud provider allows application owners to specify

performance service-level objectives (SLOs), which hinders

the adoption of serverless computing to latency-critical ap-

plications (e.g., Web services and machine learning model

serving). This project aims to close the gap and provides

performance SLO guarantees in a multi-tenant serverless

computing platform. The results demonstrate that our pro-

posed resource management framework achieves almost 2x

better performance than the comparison baseline (i.e., Open-

Whisk’s default resource manager), thus optimizing the user-

defined SLOs. A real-time web-based profiling dashboard

is also implemented to visualize the serverless computing

platform performance under different configuration options.

1 Introduction
Serverless computing has been a recent emerging paradigm

in cloud computing [39, 42, 52]. It is typically defined as the

Function-as-a-Service (FaaS) model where a user application

is disintegrated into smaller triggers (i.e., events) and action
(i.e., functions) that are hosted on a seamless platform for

execution [41]. Serverless computing enables a new way of

building microservice-based applications [3, 4, 33], having

the benefit of greatly reduced operational complexity. It has

been instrumental in addressing key features in cloud com-

puting such as auto-scaling and loose-coupling of monolithic

systems into smaller services (i.e., microservices). Serverless

computing follows a pay-as-you-go model allowing the end

users to only be concerned about their application function-

ality where they are charged for the resources and time

allocated for running the functions without the associated

cost for the server idle time.

It is worth mentioning that the concept of serverless com-

puting does not imply ”no-servers“ in the framework but

rather accounts for no scaling management or provisioning

of servers (as a customer) in a cloud computing paradigm.

In a typical serverless computing scheme, the developer is

only responsible for uploading the code or the function im-

age
1
that needs to be executed. On the other hand, the cloud

service providers have a wider range of responsibilities span-

ning across the management of datacenters, cloud resources,

and runtime environment.

1.1 Serverless Computing Architecture and
Workflow

A serverless computing platform is an event-driven compute

platform that runs function codes in response to events or

direct invocations (i.e., client requests). Figure 1 shows the

high-level architecture of a serverless computing platform

and the request serving workflow. The serverless computing

platform consists of a central controller (master node) and a

group of invokers (worker nodes). Each function is packaged

into and run as containers (or Pods in Kubernetes). The con-

troller makes scheduling decisions on container placement,

request routing, and load balancing. The invoker will exe-

cute the function after it gets the request from the controller.

After a period of time (defined by a keep-alive timeout value),

the container will be invalidated or evicted from the invoker

if there is no subsequent invocations for that function.

Client

Ingress Controller &
Scheduler

Invoker / Node

Function Pod

Function Pod

Function Pod

Invoker / Node

Function Pod

Function Pod

Function Pod

Function Pod

Function Pod

Function Pod

Invoker / Node

Backend (DB, Object Store, Stream Processing)

Decisions: Request Routing & Load
Balancing + Function Pod Placement

Requests API Gateway
(Nginx)

Figure 1. Serverless computing platform architecture and

request-serving workflow

The workflow for serving a request is: (i) A client sends a

request to invoke function 𝐹 to the API gateway. (ii) If the

function pod of 𝐹 is kept alive, then the controller sends the

1
The container entirely encapsulates the serverless function (i.e., libraries,

handler code, OS, runtime, etc.) so that all the customer needs to do after

that is point an event at it to trigger it.

1

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

invocation to the associated invoker (a “warm-start”). (iii)

Otherwise, the scheduler chooses an invoker on which the

function pod can be initialized and send the invocation of 𝐹

to that invoker (a “cold-start”). (iv) Depending on application

logic, 𝐹 may use additional back-end services.

1.2 Life Cycle of a Function Container in
OpenWhisk

Figure 2 illustrates an overview of different stages during the

life cycle of a container. The way function invocation works

in OpenWhisk is that a pair of unique <user, function> is

associated with a couple of containers and a container can be

reused for the function’s multiple invocations indentified as

the <user, function> pair. In order to obtain a highly scalable

performance and low-latency response, container schedul-

ing, reusing and caching is of prime importance. A cold-start

will create a new container. Once the container is created, it

will be initialized first. In the initialization phase, the function

code is loaded into the container and an initialization func-

tion (/init) is called to prepare to execute their functions

(e.g., initialize the language runtime, prepare database con-

nection, caching, etc.). Creating containers is an expensive

process, a pool of “pre-warmed” containers is maintained

that are ready to run for workloads with frequently used

language runtimes. Finally, the function is executed and the

results are returned to the user. Once the function returns,

the container is kept on the “running” phase for a small pe-

riod of time (called grace period or keep-alive timeout value

in the order of a few milliseconds). Within this period, if

there is another request from the same user, this container

can be reused immediately. That is called the “hot” path. The

container is suspended after the expiration of the grace pe-

riod. After suspension, any request will then follow a “warm”

path to resume the container. If the suspended container

is idle for a long time (longer than the keep-alive timeout

value), it will be destroyed.

Create

/init

prealloc

/run suspend resume

"Cold"

"Hot"
Expiration of grace period (keep-alive timeout)

Grace period (keep-alive timeout)

"Pre-warmed"

A pool of pre-warmed containers is maintained
for intensive workloads run times

Figure 2. Life-cycle of a function container in OpenWhisk

1.3 Motivation and Problem Statement
Despite the benefits brought by serverless computing, no

existing cloud provider allows application owners to specify

performance service-level objectives (SLOs), which hinders

the adoption of serverless computing to latency-critical ap-

plications (e.g., Web services and machine learning model

serving). However, significant performance variation is ob-

served for running FaaS workloads which ranges from a few

milliseconds to seconds. In this project, we aim to close the

gap by proposing a resource management framework for a

multi-tenant serverless computing platform, which provides

service-level objectives (SLOs)
2
to latency-critical serverless

applications without over-provisioning. The resource man-

agement decisions for each function consist of (i) the number

of containers to spawn for the function, i.e., the concurrency,

and (ii) the size of each container, e.g., the memory and CPU

limit. There are other decisions in the serverless computing

platform such as request scheduling, request load balancing,

request admission control, and container placement, but they

are out of scope of this project.

1.4 Challenges
Based on the survey papers on serverless computing and

characterization papers [5, 9, 18, 24, 27, 32, 43] on FaaS work-

loads, we summarize the following three challenges that

worsen the performance unpredictability problem of FaaS

workloads:

Costly but inevitable cold-start latencies. Despite re-
cent advances such as AWS Firecraker [1] and snapshot-

based approach [46], the runtime or sandbox initialization

latencies still remain and can be substantial, compared to the

execution times of each function. The SLO of each latency-

critical function typically cannot afford several seconds of

increase in end-to-end latency. However, unless there is a

perfect future workload predictor, cold-start is inevitable

if cloud providers do not want to keep unused containers

forever in the memory.

Diverse FaaS applications. FaaS applications include

short-lived scripts (such as machine learning inference, Web

API serving, and IoT applications), and parallel services in

big data processing, HPC in cloud, and scientific computing

applications. The execution times of functions range from

milliseconds to minutes (i.e., 5 orders of magnitude).

Multi-tenant cloud environments. Cloud providers of-
fer their services to applications from different cloud users,

allowing them to share the underlying infrastructure to in-

crease the resource utilization. However, this comes at the

cost of competing for limited resources. Although recent

papers propose machine learning based resource manage-

ment for each applications, a central controller is not scalable

given the number of functions submitted to a cluster, while

per-application controllers competing for shared resources

may lead to more SLO violations in the worst case.

2 Approach Overview
Figure 3 shows an overview of our proposed solution. Our

approach consists of multiple techniques to tackle the three

main challenges mentioned in Section 1.4.

2
An example of the types of performance SLO this project uses is: 99% of

the requests are processed within 100ms.

2

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

Application categorization andprioritization.We cat-

egorize FaaS applications into latency-critical (LC) and best-

effort (BE) as most cloud providers do for client VMs. LC

applications will have client-defined SLOs for end-to-end

latencies and each of themwill be given a priority. The lower-

bound for scaling down is at least 1 container, which elimi-

nates cold-starts (Challenge 1). Clients will pay for the cold-

start elimination and application priority. BE applications do

not have SLO requirements and they are assigned the low-

est priority. Upon resource scarcity, BE applications will be

compromised first to avoid SLO violation of LC applications.

Per-application resource controller. Due to the diver-

sity of FaaS applications (Challenge 2), we will use per-

application resource controller (1 in Figure 3) to manage

the resources allocated to it. In specific, it manages the num-

ber of CPU cores and the amount of memory associated with

each instance, as well as the number of instances (i.e., con-

currency). There are ML-based solution (e.g., FIRM [40] and

Sinan [53], as mentioned in the related work), and also static

approach (e.g., Heracles [31], PARTIES [10], CLITE [38]). We

will focus on ML-based approach because of the highly dy-

namic environment in the cloud and the varying behavior

of FaaS workloads, to avoid painstakingly tuning heuristics

or thresholds.

Per-system-pool resource manager. To resolve con-

flicts in a multi-tenant environment (Challenge 3), a resource

manager (2 in Figure 3) will gather global information on

resource availability and coordinate the resource allocation

to multiple per-application resource controllers. By doing

this, each per-application resource controller can compete

for shared resources by proposing resource requests and the

resource manager can grant resources based on SLOs and

priorities. We divided the cluster into multiple system pools,

each of which manages multiple FaaS applications, to tackle

the scalability problem of a centralized resource manager.

System Pool
API Gateway

Resource Manager

Invoker #M

1 2 3

4 5 6

Invoker #2

1 2 3

4 5 6

Invoker #1

1 2 3

4 5 6

…

6 6 6
3…

Clients

Requests

Availability Queues

App #1 C

App #2 C

App #3 C

C - Resource Controller

- CPU Core

Br
ok

erAllocation
Measurements

Workers

Fu
nc

tio
n

In
vo

ca
tio

ns

Ap
p

Co
nt

ro
lle

r

1 2 - Container

Scheduling Policies

1

Application Owners

SLO Definition

Figure 3. Overview

Our implementation is based on OpenWhisk [51], an open-

sourced serverless computing platform.We use open-sourced

FaaS benchmarks [44, 54] and profilers [44] for running the

workloads and retrieving the measurements. The scope of

the project consists of two main parts: (1) ML-based resource

controllers for functions, and (2) coordination of asynchro-

nous function resource controllers based on priorities and

SLO requirements. This is challenging because of the asyn-

chronous nature of distributed systems in practice. Consider

an example of two applications A and B, where A has higher

priority. If A’s resource request arrives later than B’s, then

the resources could be granted to B, whose priority is low.

2.1 Application Controller
In our design, the resource allocation of each function or

each chain of functions will be controlled by an application

controller (represented as 1 in Figure 3). The input to the

application controller is the measurements on the function

container resource usage, workload characteristics (i.e., in-

vocation frequency), and the history performance profiles.

The output of the application controller is the resource al-

location decisions including the size of the containers (e.g,

memory and CPU limits) and the number of containers (i.e.,

function concurrency). The output is then sent to the central

resource manager as the resource request. We plan to use

an ML-based approach with a supervised learning algorithm

trained with the profiling database consisting of mappings of

resource allocation combinations, invocation frequency, and

the performance statistics. The algorithm for the application

controller is shown in Algorithm 1.

Algorithm 1 Application Resource Controller

Require: Function Profile 𝑑𝑏, Function ID 𝑓 𝑖𝑑

Require: 𝑖𝑠𝑃𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔𝐵𝑎𝑠𝑒𝑑 , Current Measurements𝑚

Require: Trained random forest 𝑟 𝑓 , Function 𝑆𝐿𝑂

1: if 𝑖𝑠𝑃𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔𝐵𝑎𝑠𝑒𝑑 then
2: 𝑝𝑒𝑟 𝑓 𝐿𝑖𝑠𝑡 ← 𝑑𝑏.𝑔𝑒𝑡 (𝑓 𝑖𝑑 ,𝑚.𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑)

3: 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑆𝑖𝑧𝑒 , 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦← argmax(𝑝𝑒𝑟 𝑓 𝐿𝑖𝑠𝑡)

4: else
5: 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑆𝑖𝑧𝑒 , 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦← 𝑟 𝑓 (𝑓 𝑖𝑑 ,𝑚, 𝑆𝐿𝑂)

6: end if
7: return containerSize, concurrency

We first implemented a profiling-based approach (in our

midterm report). Given theworkload, we dynamically choose

the resource allocation based on history performance profile

database. Currently, we only support single-function applica-

tions, we leave the implementation for function-chain appli-

cations to the next stage. After that, we also implemented an

ML-based application resource controller based on a simple

supervised learning algorithm called random forest due to its

relatively good performance among all supervised learning

algorithms [7]. Random forests are an ensemble learning

method for classification, regression and other tasks that

operates by constructing a multitude of decision trees at

training time and outputting the class that is the mode of

3

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

the classes (classification) or mean/average prediction (re-

gression) of the individual trees.

In the case of resource management for performance op-

timization, we model the training of such an application

resource controller as a regression problem. The “class” or

output variable 𝑦 is the end-to-end latency of a function

invocation. The “features” or input variable 𝑋 is a list of re-

source controlling knobs including CPU limit, memory limit,

vertical concurrency and horizontal concurrency. The train-

ing dataset is collected during the offline profiling process.

Compared to the profiling-based approach, the ML- based

application controller has similar performance because the

random forest algorithmwill learn the pattern from the train-

ing dataset shared with the profiling database. However, an

ML-based approach is preferable because both the workload

and the environment in serverless computing could change

from time to time, not to mention the update frequency of

FaaS applications. Traditional heuristics- or threshold-based

approaches may suffer from painstakingly tuning and testing

of the heuristics, which could be repetitive and is a waste of

human effort.

2.2 Central Resource Manager

In a datacenter with thousands of physical machines, it may

not be scalable to have a central resource manager of a single

node or a couple of state-replicated nodes (with consensus

protocols such as Raft or Paxos). Therefore, due to scala-

bility concerns, we choose to have a per-system-pool cen-

tral resource manager, where each system pool can contain

hundreds of machines
3
. In our design, the central resource

manager (represented as 2 in Figure 3) is responsible for

coordinating the resource allocation for all applications. It

receives the resource allocation requests and grants/denies

the requests based on application priorities. In a multi-tenant

environment, all functions are consolidated on limited num-

ber machines to drive up system resource utilization. How-

ever, all application controllers are competing for limited

shared resources to guarantee each application’s SLO. With-

out global states, no SLO will be satisfied in the worst case.

For example, application A and B are co-located on the same

physical machine. To satisfy their SLOs, both A and B re-

quires 40% of the CPU time and both SLOs can be satisfied.

Now consider a case when the request arrival rates of both

A and B are increased such that both A and B require 60%

of the CPU time. Selfish or greedy application controllers

without a communication mechanism or shared-information

will ask for more CPU times at the same rate (assuming they

are synchronous) and may end up with 50%-50% division of

the CPU time, which violates both A’s and B’s SLOs.

3
This is a reasonable assumption given that a typical Kubernetes cluster in

modern cloud datacenters consists of 5 to 500 machines, and Kuberentes

cluster with a central API server or management node can support up to

5000 nodes. Reference: https://learnk8s.io/kubernetes-node-size

Algorithm 2 Central Resource Manager

Require: Max quota of globally available resources:

𝑊𝑚𝑎𝑥 = 𝑓 (𝑛𝑐𝑝𝑢 , 𝑛𝑚𝑒𝑚𝑜𝑟𝑦, 𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑛𝑏𝑤)
Require: Application profile 𝐴𝑖 ∈ Application ID set (𝐴𝑖𝑑)

Require: Application priority (𝛿𝑖)

Require: Resource demand from application 𝐴𝑖 :

𝐴𝑖,𝑛 = 𝑓 (𝑛𝑐𝑝𝑢, 𝑛𝑚𝑒𝑚𝑜𝑟𝑦, 𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑛𝑏𝑤)
Require: Priority Queue of Application IDs in 10ms, 𝑄𝑡

Require: Number of applications in queue 𝑄𝑡 : 𝑘

1: Sort 𝑄𝑡 in decreasing order of Application’s 𝛿𝑖
2: Init key-value store (𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑡𝑜𝑟𝑒) for status of applica-

tion resource request: <𝐴𝑖 : 𝑆𝑡𝑎𝑡𝑢𝑠>

3: 𝑅𝑎𝑙𝑙 = 𝑐𝑝𝑢,𝑚𝑒𝑚𝑜𝑟𝑦, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑏𝑤

4: for 𝑖 ← 1 . . . 𝑘 do
5: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝑖 ← argmin𝑟 ∈𝑅𝑎𝑙𝑙

(𝑊𝑚𝑎𝑥,𝑛𝑟 /𝐴𝑖,𝑛𝑟)
6: if 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝑖 < 1 then
7: 𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑡𝑜𝑟𝑒 (𝐴𝑖) ← 𝐷𝑒𝑛𝑖𝑒𝑑

8: else
9: 𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑡𝑜𝑟𝑒 (𝐴𝑖) ← 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑

10: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

11: end if
12: 𝑊𝑚𝑎𝑥,𝑛𝑐𝑝𝑢 ←𝑊𝑚𝑎𝑥,𝑛𝑐𝑝𝑢 −𝐴𝑖,𝑛𝑐𝑝𝑢

13: 𝑊𝑚𝑎𝑥,𝑛𝑚𝑒𝑚𝑜𝑟𝑦
←𝑊𝑚𝑎𝑥,𝑛𝑚𝑒𝑚𝑜𝑟𝑦

−𝐴𝑖,𝑛𝑚𝑒𝑚𝑜𝑟𝑦

14: 𝑊𝑚𝑎𝑥,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ←𝑊𝑚𝑎𝑥,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 −𝐴𝑖,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒

15: 𝑊𝑚𝑎𝑥,𝑛𝑏𝑤 ←𝑊𝑚𝑎𝑥,𝑛𝑏𝑤 −𝐴𝑖,𝑛𝑏𝑤

16: end for
17: Requeue 𝑄𝑡 for the next interval of 10 ms

18: return 𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑡𝑜𝑟𝑒 ,𝑊𝑚𝑎𝑥

19:

20: On arrival of an application (𝐴𝑖) elimination event:

21: 𝑊𝑚𝑎𝑥,𝑛𝑐𝑝𝑢 ←𝑊𝑚𝑎𝑥,𝑛𝑐𝑝𝑢 +𝐴𝑖,𝑛𝑐𝑝𝑢

22: 𝑊𝑚𝑎𝑥,𝑛𝑚𝑒𝑚𝑜𝑟𝑦
←𝑊𝑚𝑎𝑥,𝑛𝑚𝑒𝑚𝑜𝑟𝑦

+𝐴𝑖,𝑛𝑚𝑒𝑚𝑜𝑟𝑦

23: 𝑊𝑚𝑎𝑥,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ←𝑊𝑚𝑎𝑥,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 +𝐴𝑖,𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒

24: 𝑊𝑚𝑎𝑥,𝑛𝑏𝑤 ←𝑊𝑚𝑎𝑥,𝑛𝑏𝑤 +𝐴𝑖,𝑛𝑏𝑤

The central resource controller, on the other hand, will

gather global information on resource availability and co-

ordinate the resource allocation to multiple per-application

resource controllers, based on application priorities. In the

previous case, if application A has higher priority, then A

will be allocated 60% of the CPU time and B will be migrated

to another machine or scaled out to create another container,

instead of scaling up to 60% on the same machine with A.

Here, we envision a central resource manager to operate

periodically (every 10 milliseconds) to accommodate incom-

ing requests from the user submitted function/application

every 10 ms. These requests are stored in a priority queue

that are ready to be executed but are not yet allocated with

resources. The central resource manager allocates resources

based on the application priorities and their execution times.

The algorithm is presented in Algorithm 2. The algorithm

proposes allocation based on global view of resource avail

abilities and application priorities.

4

https://learnk8s.io/kubernetes-node-size

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

Table 1. FaaS benchmark profiling parameters.

Parameter Value

Function type base64, prime, json

Invocation rates 10, 20, 30, 40, 50

Cluster setup single-node, ten-node

Memory size (MB) 256,320,384,448,512

CPU-share 128,256,384,512,640,768,896,1024

Horizontal concurrency 2, 4, 6, 8

Vertical concurrency 0, 1, 2, 4

3 Benchmark Profiling Results

We have set up two OpenWhisk clusters: (i) a single-node

cluster deployed on a physical machine with 8 CPUs of In-

tel(R) Core(TM) i7-7700 CPU @ 3.60GHz model and 16GB

memory, and (ii) a multi-node cluster deployed on UIUC

CS VM server farm with 1 master node and 9 invokers. To

understand how function performance is affected by factors

including container size (e.g., CPU share and memory limit),

vertical concurrency (i.e, the number of requests that can

be concurrently sent to a container), and horizontal concur-

rency (i.e., the number of containers spawned for a function),

we did intensive profiling (see Table 1) on selected bench-

marks from [44]: (i) base64 (CPU-intensive workload doing

string transformation), (ii) json (memory-intensive workload

doing JSON input object processing), and (iii) primes (CPU-

and memory-intensive workload doing large prime number

computation). We plan to use more benchmarks including

real-world FaaS applications from ServerlessBench [54] in

the next stage of the project. The profiling code for different

application workloads and parameters is available on Github

(Git link anonymized for blind review, 2021).

Before go into the discussion of the results, three perfor-

mance metrics are defined as follows: (i) Wait time is the

time spent waiting in the internal OpenWhisk system. This

is roughly the time spent between the controller receiving

the activation request and when the invoker provisioned a

container for the action. (ii) Initialization time is the time

spent initializing the function. If this value is present, the

action required initialization and represents a cold-start. A

warm activation will skip initialization, and in this case, the

annotation is not generated. (iii) Execution time is the time

for processing the function. (iv) End-to-end latency corre-

sponds to the time between when a controller receives an

invocation request and the time when the controller receives

the result from the invoker.

3.1 Container Size

We first study the effect of container size on the function

invocation performance. Figure 4 and 5 illustrate the differ-

ent results for different parameters values to validate how

memory limit and CPU share affect the function invocations.

We consider the following types of performance metrics:

wait time for warm-start and cold-start, initialization-time

for cold-start, execution time, end-to-end latency for warm-

start and cold-start. For execution time, the results that we

show are from cold-starts because the execution time does

not vary with the invocation type.

Running base64 function benchmark with invocation
rate = 10 on a single-node cluster.Without further speci-

fication, the invocation of actions (in all following figures)

is chosen to be in a uniform distribution over a period of

time (e.g, [2, 7], in total 5 seconds). Figure 4 demonstrates

the different profiling results for base64 function on a single

node cluster when the invocation rate is set to 10. Figure 4(a)

and (b) demonstrate the average waiting time for warm- and

cold-start invocations where cold-start takes a much smaller

time than warm-starts. This is because in cold-starts, the

invocation does not need to wait for an existing container

to finish executing the function, while in warm-starts, the

waiting time comes from queuing to wait for an available

container. As the CPU-share and assigned memory to the sin-

gle node cluster increases, the average waiting time reduces

linearly. The average standard deviation for waiting time for

both warm-start and cold-start invocations are 1344.62 and

609.43 ms respectively.

Additionally, for a given CPU-share and memory,the ini-

tialization time for cold-start invocations is less than the

wait time. Low startup (initialization) time indicates that the

system takes less time to prepare for the request handling.

From the figure, it is evident that the end-to-end latency

for warm-start invocations is much larger than that for the

cold-start invocations when using our profiling invocation

schedule. Since base64 application is a highly CPU-intensive

task the execution latency is also quite high (900 ms). Our

experiments show that under low arrival rates (e.g., when

rate = 10), varying CPU-share has less impact on execution

time of the containers, partly also due to the execution time

is not the dominant factor in the end-to-end latency. CPU

shares play a larger role when the arrival rate is much higher

(such as 50 per second). The average standard deviation for

the execution response time for warm-start and cold-start in-

vocations is computed to be 60.59 and 72.90 ms. The smaller

measure for standard deviations indicate stable consistency

in execution response times.

Running base64 function benchmark with invocation
rate =10 on a multi-node cluster. Figure 5 shows the dif-
ferent results for invoking base64 functions on a 10-node

OpenWhisk cluster with various combinations of allocated

memory size and CPU-share in the range shown in Table 1.

From the Figure 5(a) and (b), we can infer that for a given

memory size (512MB) and CPU share (1024) the wait time

for warm-start invocations on a cluster increases by a fac-

tor of 71% whereas the wait time for cold-start invocations

reduces by a factor of 88% for the multi-node cluster in com-

parison with a single-node cluster. This is due to the addi-

tional overhead caused by fresh start for containers across

5

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

750.0 2930.1 2723.8 2916.1 2831.7 2892.9 2661.1 2625.8

2974.0 2349.0 2421.9 2417.0 2446.9 2537.0 2365.3 2632.5

3105.0 3187.6 2474.2 2455.0 2460.6 2611.1 2434.1 2330.8

2714.2 2590.2 2622.3 2974.2 2527.5 2973.4 2769.6 2529.3

3481.2 3116.7 2997.9 3056.4 3110.0 2807.7 2988.8 2854.4

Wait Time for Warm Start Invocations

1000

1500

2000

2500

3000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

nan 1867.9 1609.1 1830.5 1804.4 1796.5 1591.2 1692.8

1869.8 1234.2 1336.7 1323.3 1337.7 1411.5 1245.0 1494.0

1847.8 1657.6 1268.0 1258.8 1168.4 1419.6 1282.6 1092.0

1288.8 1045.0 1129.0 1322.0 1021.0 1266.5 1125.2 1131.5

1458.7 1052.3 1071.7 989.0 1183.3 891.3 1082.3 943.3

Wait Time for Cold Start Inovcations

1000

1200

1400

1600

1800

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

nan 394.2 389.6 391.0 354.0 361.2 389.4 382.1

372.5 304.0 336.7 331.2 310.0 339.7 375.0 369.2

301.6 375.2 266.6 275.2 329.8 278.4 230.6 318.8

253.8 312.0 252.8 367.8 266.2 361.0 369.0 209.8

287.3 214.3 222.3 290.0 145.7 217.7 137.0 213.7

Init Time for Cold Start Invocations

150

200

250

300

350

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

nan 945.2 927.8 963.5 944.2 987.5 924.0 904.0

734.2 769.7 754.5 737.2 748.8 735.0 725.8 730.0

674.0 675.8 696.8 637.0 670.2 661.0 649.2 646.6

596.5 616.0 577.8 621.5 643.0 628.0 608.0 571.5

509.7 542.0 514.0 560.7 606.3 515.7 524.7 526.7

Execution Time for Cold Start Invocations

600

700

800

900

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1784.7 3960.7 3770.0 3931.5 3857.1 3915.8 3689.2 3618.5

3745.8 3127.6 3198.7 3188.9 3231.8 3316.1 3141.3 3411.4

3788.0 3892.3 3147.3 3134.9 3145.8 3282.3 3119.6 3006.4

3297.9 3178.6 3212.7 3566.0 3107.6 3570.1 3359.7 3115.3

3981.0 3629.6 3495.4 3557.6 3606.7 3305.1 3492.9 3348.4

E2E Latency for Warm Start Inovcations

2000

2250

2500

2750

3000

3250

3500

3750

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

nan 3207.4 2926.5 3185.0 3102.6 3145.2 2904.6 2978.9

2976.5 2307.8 2427.8 2391.7 2396.5 2486.2 2345.8 2593.2

2823.4 2708.6 2231.4 2171.0 2168.4 2359.0 2162.4 2057.4

2139.0 1973.0 1959.5 2311.2 1930.2 2255.5 2102.2 1912.8

2255.7 1808.7 1808.0 1839.7 1935.3 1624.7 1744.0 1683.7

E2E Latency for Cold Start Inovcations

1800

2000

2200

2400

2600

2800

3000

3200

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 4. Profiling of base64 benchmark on a single-node cluster with invocation rate=10.

all the nodes in the distributed cluster that impacts the over-

all waiting time for cold-start invocations. The overhead

for waiting time is also due to the network bottleneck in

communication between the nodes to handle various depen-

dencies. The sudden spike in Figure 5(a) for memory limit

at 384 MB and CPU-share at 256 happens due to noise or

an outlier observation. Moreover, for a given memory size,

as the CPU-share across nodes increase, the waiting time

reduces proportionally by a factor of 16% which follows a

similar trend as observed in the single-node system. For Fig-

ure 5(c), increasing the CPU-share reduces the initialization

time for cold-start invocations by 25% whereas increasing

the memory limit increases the initialization time. That is

because the larger the memory limit, the less concurrent

containers will run in each invoker, thus, the more CPU

shares each container can use. For Figure 5(d), we can ob-

serve that increasing CPU-share does not have significant

impact on the execution latency for cold-start invocations.

Similarly, for Figure 5(e) and (f), it is evident that as the CPU-

share increases, the end-to-end latency is only accelerated

by a factor of 13% and 6% for warm-start and cold-start in-

vocations. With the increase in memory limit, a significant

change in the latencies is observed. The end-to-end latency

for cold-start increases with increase in memory limit. This

is because the memory limit currently controls the number

of containers that are created (i.e, the number of containers

= 𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑖𝑚𝑖𝑡). In case of cold-start end-

to-end latency, for memory limit 256MB, eight containers

are created (since the total capacity is 2GB) and for 512MB,

four containers should be created. However, the invocation

rate (10Mbps) is much less than the container creation time,

leading to increase in the cold-start time for those four and

eight containers.

Due to page limit, in the Appendix Section C, we will

discuss more profiling results for different invocation rates

set to 20, 30, 40 and 50, as well as for more benchmarks

(JSON and Prime numbers). A general trend observed from

the figures is that as the invocation rates for the functions

increases, the execution time, initialization time and end-

to-end latencies for cold-start invocations are higher than

the results obtained for invocation rate as 10. The impact of

external factors such as CPU share and memory limit are the

same as observed in previously discussed results. Addition-

ally, for the other two FaaS benchmarks (json and primes), it

was found they are less CPU-intensive and therefore, their

latencies are much smaller than the ones obtained for base64

workload.

3.2 Horizontal Concurrency

Horizontal concurrency refers to the number of containers

spawned for executing a burst of requests concurrently for a

function. This is an important parameter in serverless com-

puting platforms as it provides the serverless functions the

ability to scale out to cater the increasing arrival rate, and

to scale in for saving resource utilization (containers do not

need to be always-on). In our evaluation, we choose the

horizontal concurrency to be 2, 4, 6, 8, and measure the per-

formance metrics for three FaaS micro-benchmarks: primes,

base64, and json. Table 2 shows the results for the warm-

start invocations. In all three benchmarks, the waiting time

dominates the end-to-end latency. As the horizontal con-

currency level decreases from 8 to 2, the waiting time for

each invocation increases significantly. The waiting time at

concurrency level 2 is more than two times compared to the

waiting time at concurrency level 8. However, the function

execution time decreases when the concurrency level drops

6

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

5490.8 nan 6013.3 nan nan 1956.5 1406.0 2044.0

nan nan nan nan 324.0 166.0 301.3 203.0

3018.0 2128.0 1191.6 1545.8 2278.0 1714.8 1006.6 679.6

1031.5 648.3 1040.9 689.5 845.5 360.0 795.4 841.1

1239.3 887.2 902.6 862.8 988.0 1195.2 975.0 943.1

Wait Time for Warm Start Invocations

1000

2000

3000

4000

5000

6000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3203.4 3463.3 3906.3 4327.6 4521.5 4767.9 4846.6 4775.5

4044.7 3380.8 3344.2 3188.2 3375.3 3517.6 3454.5 3589.3

3337.6 3084.8 2961.7 3065.0 2831.5 2910.6 2919.9 2972.5

2554.0 2425.3 2414.8 2343.4 2408.0 2423.3 2384.4 2347.5

2063.5 1710.4 1780.3 1738.9 1791.4 1780.9 1832.0 1840.6

Wait Time for Cold Start Inovcations

2000

2500

3000

3500

4000

4500

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3578.5 2989.9 2094.4 1781.9 1530.0 1395.8 1233.4 1068.1

3179.4 2786.9 2317.5 2147.9 1766.0 1591.7 1430.1 1311.3

1701.6 1700.2 1716.2 1663.5 1633.7 1637.8 1435.4 1206.1

1445.1 1231.1 1265.4 1186.7 1189.8 1017.4 1036.4 999.2

941.8 865.4 794.4 794.4 753.7 896.9 788.3 756.3

Init Time for Cold Start Invocations

1000

1500

2000

2500

3000

3500

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3311.3 2229.2 2088.9 1519.9 1319.7 1180.2 1049.4 932.4

847.5 1142.3 1074.6 1229.8 1181.2 1078.0 989.5 985.5

711.3 815.2 762.3 863.6 924.2 826.9 887.3 944.8

761.4 625.8 853.9 839.2 796.8 709.8 807.6 858.0

617.1 569.8 538.6 570.0 674.4 747.4 611.8 563.5

Execution Time for Cold Start Invocations

1000

1500

2000

2500

3000

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

8041.8 nan 9002.7 nan nan 2998.5 2057.5 2841.7

nan nan nan nan 1679.0 1377.0 1260.7 1077.5

3569.0 2681.4 1850.0 2093.2 3026.8 2239.0 1799.2 1316.2

1517.5 1088.4 1685.3 1241.2 1424.0 870.9 1386.3 1413.1

1706.3 1256.2 1301.6 1224.1 1383.6 1638.2 1358.1 1281.1

E2E Latency for Warm Start Inovcations

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

10093.2 8682.3 8089.7 7629.4 7371.2 7343.9 7129.4 6776.0

8071.6 7309.9 6736.3 6565.9 6322.5 6187.2 5874.0 5886.1

5750.5 5600.2 5440.2 5592.0 5389.4 5375.3 5242.6 5123.4

4760.5 4282.2 4534.1 4369.3 4394.6 4150.6 4228.4 4204.7

3622.4 3145.6 3113.3 3103.4 3219.4 3425.1 3232.1 3160.3

E2E Latency for Cold Start Inovcations

4000

5000

6000

7000

8000

9000

10000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 5. Profiling of base64 benchmark on a multi-node cluster with invocation rate=10.

from 8 to 2. This is because when there are less concurrency

containers, the CPU time is abundant for execution of limited

number concurrent containers. Since the waiting time dom-

inates the end-to-end latency, a higher concurrency level

leads to better end-to-end function invocation latency.

Table 2. Profiling results on horizontal concurrency.

Wait Time (ms) Horizontal Concurrency Level

8 6 4 2

prime 1767±423 3085±1224 3078±808 4665±1377
base64 4276±1144 4916±1107 5737±925 9205±696
json 122±167 81±104 63±74 66±76

Exec Time (ms) Horizontal Concurrency Level

8 6 4 2 1

prime 643±17 568±22 394±14 252±21 194±18
base64 981±5 804±16 606±7 444±2 301±9
json 2.2±0.4 2.3±0.5 1.8±0.6 1.7±0.5 1.3±0.7

Latency (ms) Horizontal Concurrency Level

8 6 4 2

prime 2410±406 3654±1246 3472±823 4917±1045
base64 5258±1139 5720±1106 6343±924 9649±696
json 125±167 83±105 65±75 68±76

Since thewaiting time dominates the end-to-end latency of

each function invocation, we dig deeper into how horizontal

concurrency affects the waiting time in both warm-starts and

cold-starts. Previously we have shown that the long waiting

time in warm-starts is attributed to the queueing time. After

a request is scheduled to an invoker and directed through

Kafta messaging mechanism to that invoker, each request

spends much longer time on waiting the existing requests

in the queue (at each invoker side) when the concurrency is

lower (as also shown in Figure 6(a)). A higher concurrency

helps reduce the waiting time as the incoming workload is

spread to more queues in each invoker. Note that when there

are multiple available worker processes (and thus worker

queues) at an invoker, the invoker will randomly select a

queue to direct the request to.

In terms of cold-starts (as shown in Figure 6(b)), we see

similar trends, i.e, higher concurrency level leads to lower

waiting time. Recall that the waiting time in cold-starts is

mostly the time to provision the container and load the func-

tion into the container. When the horizontal concurrency

level is 1, the waiting time is basically to pull the function

image or function source code from the remote database. But

when the concurrency level is higher than 1, the function

image or the source code is already cached at the invoker,

so the waiting time is cut significantly. From concurrency

level = 2, adding more concurrency containers does not help

reduce the waiting time because of the same reason.

3.3 Vertical Concurrency

Vertical concurrency refers to the number of concurrency

requests each container can serve. If the value is greater than

1, the controller will send the request to the warm container

(which is processing a previous request) and the request will

be queued at the warm container until the previous request

has been processed. If the value is equal to 1 (the default

setting in OpenWhisk), the controller will create a new con-

tainer instead of sending the request to the warm container

(which is processing a previous request). A higher-than-one

vertical concurrency may benefit the function if the function

can tolerate multiple activations being processed at once. We

7

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

256 320 384 448 512
Memory Limit (MB)

0

50000

100000

150000

200000

W
ai

t T
im

e
(m

s)

Warm-starts Wait-Time

concurrency
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

(a) Waiting time (warm-starts)

256 320 384 448 512
Memory Limit (MB)

0

25000

50000

75000

100000

125000

150000

175000

200000

W
ai

t T
im

e
(m

s)

Cold-starts Wait-Time

concurrency
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

(b) Waiting time (cold-starts)

Figure 6. The effect of horizontal concurrency and memory limit on the waiting time for both warm-starts (left) and cold-starts

(right).

found that most functions in the benchmarks do not tolerate

that and will suffer the queuing time when the queued re-

quests are waiting for the current request to be finished. The

execution time could be up to 1 second, which significantly

increases the end-to-end latency of subsequent requests due

to waiting/queuing. Therefore, if we do not know in advance

the execution time of a request, we choose not to waste time

queuing at the container (i.e., vertical concurrency is 1). If

we know the execution time of a request is smaller than the

cold-start time, then we choose to send the request to the

current warm container (i.e., vertical concurrency is greater

than 1).

4 Monitoring Infrastructure
4.1 Online Visualization Platform
We cannot find an existing tool to help us easily get run-time

CPU andmemory usage of each container. These information

can provide us more metrics such as the peak CPU and

memory usage for profiling workloads and more details like

the relative CPU usage among all containers for analyzing

profiling results. In this case, we build our own monitoring

and visualization tool to trace these data and also record

important timestamps 𝑡1 − 𝑡7 of each function invocation as

listed in Sec. 4.2. The monitoring tool architecture is shown

in Figure 7.

Figure 7. Monitoring tool architecture

On each VM, we used cadvisor[16] to collect CPU and

memory usage of each container with a 2Hz sampling rate.

The collected data will be sent to a VM and stored in the

influxdb, a time series data base. In the same VM, we use

SSHFS to map remote log files of the controller and invokers

to local file system and use our customized log analyzer to

parse the log. Parsed information are stored into influxdb.

Finally, we use the open-source visualization tool, Grafana

[17], for visualizing the data stored in the influxdb in pre-

defined dashboards. An example of the visualization is shown

in Appendix C (Figure 17). A FaaS profiler implemented for

the online monitoring is available on Github together with

our OpenWhisk codebase
4
.

4.2 End-to-end Latency Modelling
The end-to-end latency depends on the internal processing

flow in OpenWhisk and the total response time can be com-

puted as an accumulated delay for each step. A sequence of

steps is illustrated as follows:

• Timestamp for forwarding incoming user request to

the Controller: 𝑡1
• Timestamp for posting to Kafka (where Kafka message

distributing system is responsible for communication

between controller and the invokers): 𝑡2
• Invoker receiving the message from Kafka: 𝑡3
• Running cold start begin (where the Invoker executes

the docker run command): 𝑡4
• Running \init to initialize the function: 𝑡5
• Timestamp for execution begin and end: 𝑡6, 𝑡7

Therefore, we have:

• Total waiting time (𝑅𝑇𝑤)= 𝑡1 → 𝑡2 → 𝑡3 → 𝑡4 → 𝑡5
• Total initialization time (𝑅𝑇𝑖) = 𝑡5 → 𝑡6
• Total execution time (𝑅𝑇𝑒) = 𝑡6 → 𝑡7
• Total end-to-end latency: 𝑅𝑇𝑒2𝑒 = 𝑡7 − 𝑡1

5 Evaluation Results
5.1 Evaluation Setup
As mentioned in Section 3, we have set up two OpenWhisk

clusters, one is a single-node clsuter on a physical server;

the other is a ten-node cluster on UIUC CS VM server farm.

Our evaluation experiments are done on the multi-node clus-

ter with 1 master node and 9 worker nodes. Our serverless

workload benchmarks are the same as those on which we

performed characterization and generated function profiles:

base64, json, and primes. The function invocation follows

4https://github.com/James-QiuHaoran/openwhisk/tree/master/online-
monitoring-tool

8

https://github.com/James-QiuHaoran/openwhisk/tree/master/online-monitoring-tool
https://github.com/James-QiuHaoran/openwhisk/tree/master/online-monitoring-tool

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

Function Invocation Rate (/s)

E
nd

-to
-e

nd
 L

at
en

cy
 (m

s)

0

2500

5000

7500

10000

10 20 30 40 50

base64 (Ours) base64 (OWK) json (Ours) json (OWK) primes (Ours) primes (OWK)

(a) Cold-starts

Function Invocation Rate (/s)

E
nd

--
to

-e
nd

 L
at

en
cy

 (m
s)

0

2500

5000

7500

10000

10 20 30 40 50

base64 (Ours) base64 (OWK) json (Ours) json (OWK) primes (Ours) primes (OWK)

(b) Warm-starts

Figure 8. End-to-end latency comparison in cold-start and warm-start function invocations between our application controller

and OpenWhisk’s default way of resource management for three micro-benchmarks: base64, json, and primes.

a Poisson distribution with rate ranges from 10 to 50 per sec-

ond
5
. We set the upper bound of the invocation rate to be 50

per second because based on the function trace analysis on

a 14-day Azure production function trace dataset [45], 90%

of the functions are triggered only 1.2 times per minute. It

means that customers typically use serverless computing for

those infrequent bursty/constantly-invoked workloads. The

client is on a separate node from the ten-node OpenWhisk

cluster to avoid potential resource contention between the

client process and the OpenWhisk processes.

5.2 Per-Application Resource Controller
The resource allocation of each application is controlled by

an application controller (represented as 1 in Figure 3). The

output of the application controller is the resource allocation

decisions including the size of the containers (e.g, memory

and CPU limits) and the number of containers (i.e., function

concurrency). The output is then send to the central resource

manager as the resource request. However in this section, we

plan to evaluate the effectiveness of resource allocation deci-

sions separately, therefore, we disable the central resource

manager first (i.e., by granting whatever resource requests

from the per-application resource controller).

Figure 8 shows the end-to-end latency comparison be-

tween our application controller and the OpenWhisk’s de-

fault way of resource management (denoted as OWK in the

figure). For cold-starts (Figure 8(a)), the end-to-end latency

5
The profiling dataset is collected by using a workload generator with

uniform distributions.

does not vary too much as the invocation rate increases

from 10/s to 50/s. This is because the dominant factor in

cold-starts is the container provisioning and the function

initialization time (based on our function benchmark char-

acterization results), which does not change too much with

the invocation rate. Although different processes are concur-

rently accessing the CouchDB for function images or source

code (note that CouchDB stores all function call results in-

cluding metadata and execution times), but we found that

this is not the bottleneck (due to caching and database paral-

lelism). The performance of all three benchmarks benefits

from the per-application resource controller. Compared to

OpenWhisk’s default resource manager, our approach leads

to performance improvement ranging from 1.5x to 2.8x.

For warm-starts (Figure 8(b)), the invocation rate affects

the performance quite a bit. This is because waiting time

is much more significant compared with the initialization

time and the execution time of the function invocation. Most

of the waiting time is spent at the invoker queue, and each

function request is waiting to be processed after the previous

function requests. Therefore, if the invocation rate is larger,

the queueing time will increase significantly based on the

queueing model. The end-to-end latency for function invoca-

tions managed by OpenWhisk’s default resource manager is

1.9x to 4.1x larger than those managed by the per-application

resource controller. By selecting the optimal combinations

of CPU/memory limit and concurrency level, the controller

9

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

will lead to lower end-to-end latency compared to the de-

fault CPU/memory limit setting and OpenWhisk’s threshold-

based concurrency scaling. The drawback of our approach is

that the resource controller does not know how to manage

resources for unknown functions or new type of workloads

(the performance is based on the profiling dataset).

5.3 Per-System-Pool Resource Manager
The central resource manager (represented as 2 in Figure

3) is responsible for coordinating the resource allocation for

all applications. It receives the resource allocation requests

and grants/denies the requests based on application prior-

ities. In this experiment, we have a synthetic workload of

three benchmarks. We set the priority of base64 to be 0

(no SLO) and set the priorities of json and primes to be 1

and 2 respectively. The arrival rates of base64, json, and
primes are set to be 10/s, 20/s, and 20/s respectively. Fig-

ure 9 shows the evaluation results of the central resource

manager. We disabled our ML-based application resource

controller so that we can find the improvement only from

the central resource management. In terms of the end-to-end

latency (Figure 9(a)), our approach outperforms OpenWhisk

by up to 17%. There is little improvement on base64 because
base64 has the lowest priority among all functions and it is

not associated with any SLO. However, its performance is

not sacrificed at all.

The improvement is larger for warm-start invocations

compared to cold-start invocations because the latency does

not vary much for cold-starts (recall our characterization

finding in Section 3). The improvement mainly comes from

the reduction of waiting times (see Figure 9(b)). By assigning

priorities and allocating resources based on priority dynami-

cally, we are able to achieve up to 17% reduction in latency.

Similarly, the low-priority non-SLO-driven workload (i.e.,

base64) is not sacrificed as well.

However, our approach relies on a correct and reliable

priority assignment from the function owners. If the priority

is set maliciously high (e.g., a function with a very loose SLO

but very high priority), the performance of those functions

with tight SLOs will be sacrificed.

6 Discussion and Limitations
What do your techniques gain you? In the original Open-
Whisk design, the concurrency level is fixed. The CPU share

is proportional to the user-defined memory limit. However,

this causes significant performance variations (as shown

in our evaluation results), which is detrimental for those

latency-critical applications. Besides, the assumption of CPU

share should be proportional to the memory limit is not

valid, given the diversity of serverless workloads. Our per-

application profiling-based resource allocation approach pro-

vides performance predictability. It optimizes for the user-

defined SLOs with the history profiling database and makes

the two main scheduling decisions: container size and the

E
nd

-to
-e

nd
 L

at
en

cy
 (m

s)

0

10000

20000

30000

base64
(cold)

json (cold) primes (cold) base64
(warm)

json (warm) primes
(warm)

OWK Ours

(a) End-to-end latency

W
ai

tin
g

Ti
m

e
(m

s)
0

10000

20000

30000

base64
(cold)

json (cold) primes (cold) base64
(warm)

json (warm) primes
(warm)

OWK Ours

(b) Waiting time

Figure 9. Evaluation results of the central resource manager.

concurrency level. Traditional heuristics- or threshold-based

resourcemanagement typically works like this: (1) one comes

up with a clever heuristic and tests or tunes it until it is opti-

mal; (2) after the workload changes or application is updated,

one needs to re-tune the heuristic and test it; (3) the process

is repeated again and again. With an ML-based approach,

one does not need to go through this painstaking heuristics

tuning and re-tuning process, which could be a significant

waste of human expert effort.

What do your techniques lose you? That is, what are
the tradeoffs/limitations? Profiling-based approaches will
not work if the workload changes or the underlying system

infrastructure changes. Even if the next stage of our project

is to use an ML-based resource controller, it may not give

the optimal results if the inputs to the neural network never

appears in the training datasets. In addition, our approach

may suffer long profiling time if the number of functions

is huge, which is a waste of time or monetary cost. In addi-

tion, our approach relies on a correct and reliable priority

assignment from the function owners. If the priority is set

maliciously high (e.g., a function with a very loose SLO but

very high priority), the performance of those functions with

tight SLOs will be sacrificed.

What do your experiments tell you? Our experiments

support our idea of per-application resource controller, which

can reduce performance variation and provide predictability

for latency-critical applications. With the whole design (i.e.,

per-application controller provides local optimal solution for

10

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

resource management of an application and central resource

manager supports communication between controllers and

provides global optimal solutions based on priorites), the

serverless computing platform is able to serve multi-tenant

FaaS workloads.

Extended work on proposed cost model for serverless
functions based on pay-per-request: The cost model for

serverless computing platform depends on a variety of fac-

tors including data transfer (ingress/egress) charges, compu-

tational charge per second with the pre-configured memory

and storage settings, and the cost of additional services (such

as a BaaS database or MLaaS) used by the function. Thus, the

cumulative cost incurred by serverless functions depends on

pay-per-use pricing and the runtime cost for computational

execution (e.g., memory/CPU usage). We can predict the cost

model based on an estimate of cold start probabilities, which

is deterministic in our case as we implement the resource

manager to ensure compliance with SLOs. Probability of

cold start (𝑃𝑐𝑜𝑙𝑑) is computed as the ratio of requests causing

cold start to the total number of requests invoked during

the experiment. To compute a pay-per-use pricing model for

serverless functions, we first pre-define the cost per request

for both cold- and warm-start invocations. Assuming the

model parameters, we will then obtain: the number of re-

quests (𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠), the cost per warm-start (𝐶𝑤𝑎𝑟𝑚), cost per

cold-start (𝐶𝑐𝑜𝑙𝑑), and thus the pricing model is formulated

as follows:

𝐶𝑜𝑠𝑡 = 𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 · ((𝑃𝑐𝑜𝑙𝑑 ×𝐶𝑐𝑜𝑙𝑑) + ((1 − 𝑃𝑐𝑜𝑙𝑑) ×𝐶𝑤𝑎𝑟𝑚))

This cost model is a preliminary design, which will be ex-

plored for optimizing it further in the future work.

7 Related Work
Recent studies has demonstrated various efforts taken to ad-

dress some of the existing challenges in serverless computing

environment such as global resource management, flexible

scheduling of the functions, launch starts (cold-start delays),

and performance isolation. In [28], the authors highlight dif-

ferent performance issues related to serverless computing

due to several factors such as limited available resources

(such as CPU and memory) for function invocation, number

of concurrent requests, restricted runtime resources, and

lack of optimized code. Although some efforts have been

made to overcome a few of these challenges [41, 52], most

of these works are recent and in a nascent stage that are still

far from overcoming serverless computing issues in totality.

Some of the existing work along these lines are discussed in

the following sections.

7.1 Serverless Computing Platforms
Different commercial applications have been successful de-

ployed on serverless computing platforms such as Google

App Engine [11], Amazon Lambda AWS [21], Google Cloud

Functions (GCF) [20], Kubeless [30] FaaS platform with Ku-

bernetes. Different other open-sourced serverless comput-

ing platforms and profilers such as KNative [29], Apache

OpenWhisk [51], FaaS-Profiler [44], Nuclio [36], Kubernetes

Fission [15], OpenLambda [19], and OpenFaaS [13] prevail

currently in the serverless computing domain, facilitating

users to split their application across multiple simple services

(i.e, the trend towards microservices). In [39, 42], authors

elaborate on emerging challenges in serverless computing

that prevent maximizing the best utilization of serverless

computing including lack of proper development and test-

ing tools, poor performance as infrequently used serverless

functions have higher runtime with increased end-to-end re-

sponse delay, resource limitation by cloud service providers,

security and privacy vulnerabilities in serverless model.

7.2 Function Scheduling in Serverless Computing
Platforms

In [49], the authors address the job scheduling of server-

less environments by implementing a QoS enabled drop-

in framework, called Sequioa. Sequioa allows the develop-

ers to define how the serverless functions can be deployed

and prioritized using adaptable policies. Archipelago [47]

is another delay-sensitive serverless computing framework

that deploys a shortest-remaining-slack-first algorithm for

scheduling serverless functions. Other function scheduling

approaches such as GrandSLAM [26] are based on reorga-

nizing function requests depending on the least slack time.

However, it does not consider generic QoS level guarantees

required by the applications. Similarly, FnSched [48], is an-

other design for function-level scheduler to manage resource

allocation across co-residing functions on each invoker de-

pending upon the traffic variability. However, one underlying

assumption of this framework is that the function execution

times are constant which can be determined via detailed pro-

filing for CPU-shares. This assumption, however, may fail in

a public cloud setting, given the dynamic cloud environment

and constantly changing client workloads. In another work

[25], the authors deploy a cluster-level centralized and core-

granular scheduler for serverless functions. The centralized

design allows for a global view of the resources while the

core-granularity helps in eliminating resource interference.

This facilitates the adaptability of the proposed scheduler

across various time sensitive applications via SLAs.

7.3 QoS-Aware Resource Management in
Microservices

For smooth functioning of microservices, efficient run time

resource scheduling is important to meet the QoS guarantees.

Lately, machine learning based scheduling approaches have

gained a significant momentum towards achieving this goal.

The scheduling exploration space increases linearly with an

increase in number of computational server resources (CPU

cores, cache, network bandwidth, etc. Thus, machine learn-

ing based models play a pivotal role in proposing an optimal

11

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

solution for scheduling mechanisms. While machine learn-

ing is still very popular for applications like image or speech

recognition, it’s contribution towards resource scheduling is

still limited and open for more research directions. In [40],

the authors proposed an ML-based resource management

framework, FIRM, to tackle the issue of microservices un-

derutilization and SLO violations. The two-tier ML model

is first, responsible for identifying the microservices that

cause SLO violations and second mitigating those violations

via dynamic reprovisioning. However, a few drawbacks of

this work include its limited scalability with the number

of applications, and no capability for identifying the SLO

violations from sources such as global resource sharing and

the hardware. Sinan [53], a QoS-aware resource manage-

ment framework for mircoservices is another model that

employs machine learning algorithms to reduce resource

utilization while meeting the end-to-end QoS. Other static-

threshold based resource allocation approaches have also

been explored in the literature [10][31] to ensure resource

sharing and management, but do not account for application

dynamism. These approaches are either for single applica-

tion or container-based long-running microservices do not

suit for ephemeral and fine-granular serverless workloads.

7.4 Cold Start Management

One of the major bottlenecks in existing serverless com-

puting paradigms is the performance degradation due to

significant cold-start latencies (compared to function exe-

cution time). Typically, cold-start refers to the time it takes

for a function logic to deploy along with it’s associated de-

pendencies. Different approaches have been explored in the

literature to address this issue so far. The magnitude of the

cold-start problem is illustrated in [50], where the authors

measure the cold-start delay for two different benchmarks

(I/O intensive using Tensorflow for image recognition and

CPU intensive for Fibonacci) on Amazon AWS lambda. The

results demonstrated the cold-start delay for I/O intensive

workload is almost 10 times more than the CPU-intensive

benchmark, which makes it a raging concern for real-time

applications. In [45], the authors design a hybrid histogram

policy that is responsible for reducing the number of cold

start requests with least amount of resource utilization. The

policy is based on different rules that uses different keep-alive

values according to the actual invocation frequency and pat-

tern (time series analysis for unpredictable functions). Even

though the designed policy works efficiently to eliminate

large number of cold-start invocations, it is computationally

expensive to operate. Similarly, freshen [22], a new primitive

proposed to serverless runtimes allows the developers to pre-

initialize functions depending upon their predictability. A

potential integration of freshen with open source serverless

architectures to reduce cold-start latency and improve func-

tion responsiveness is a pressing need that can be explored

in this work.

7.5 Other Optimization Techniques
There are some other recent work [2, 6, 8, 12, 14, 23, 34, 35,

37] on optimization of latency in serverless computing plat-

forms, which is complementary to our project. For example,

OFC [35] uses the idle memory (because of overprovision-

ing) to serve as the in-memory cache per-node to reduce

the latency of accessing backend datastore. Nightcore [23]

schedules function chains locally on one worker node in-

stead of going through the gateway again and again and also

does OS optimizations to reduce IPC overhead. SEUSS [6]

deploy functions from unikernel snapshots, bypassing ex-

pensive initialization steps. It reduces the memory footprint

of snapshots by applying page-level sharing across the entire

software stack that is required to run a function. USETL [14]

also proposes that unikernels are a natural fit for execution

contexts with these properties: they are minimal kernels

packaged with a single application in a single address space,

which makes them incredibly lightweight.

8 Conclusion and Future Work
With the increasing popularity of serverless architectures

and services, the issue of cold-start delays and performance

variation is a growing concern. However, no cloud provider

allows application owners to specify performance SLOs,

which hinders the adoption of serverless computing to latency-

critical applications. In this project, we perform compre-

hensive characterization on a popular serverless computing

platform OpenWhisk and we can deduce that the latencies

are largely affected by the warm and cold start conditions.

CPU-intensive application workloads such as base64 ben-

efit largely with higher CPU-share without affecting the

memory-limits. The profiling results with different FaaS ap-

plication workloads and varying external parameters such

as CPU-share, memory limit, and concurrency levels provide

a deeper insight into the resource allocation in the serverless

computing platform design.

Based on those insights and serverless platform character-

istics, we further proposed and implemented a performance-

aware resource allocation framework for multi-tenant FaaS

workload. Given the user-defined SLOs, our approach pro-

vides performance guarantees with a profiling-based per-

application resource allocation mechanism. We design an

ML-based resource controller to draw insights on per-function

resource allocation instead of doing plenty of repetitive pro-

filing work for each function. Evaluation results show that

our approach outperforms OpenWhisk by 1.5x to 4.1x in

terms of the end-to-end latency. In the future, we plan to ex-

tend our framework to a chain or graph of functions instead

of a single function for optimizing end-to-end application

SLOs.

The source code for the project is publicly available at:

https://github.com/James-QiuHaoran/openwhisk
12

https://github.com/James-QiuHaoran/openwhisk

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

References
[1] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R.,

Piwonka, P., and Popa, D.-M. Firecracker: Lightweight virtualization

for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI ’20) (2020), pp. 419–434.

[2] Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A.,

Aditya, P., and Hilt, V. SAND: Towards high-performance serverless

computing. In 2018 Usenix Annual Technical Conference (USENIX ATC
’18) (2018), pp. 923–935.

[3] Serverless microservices - microservices on AWS. https:
//docs.aws.amazon.com/whitepapers/latest/microservices-on-
aws/serverlessmicroservices.html.

[4] Building serverless microservices in Azure - sample architec-

ture. https://azure.microsoft.com/is-is/blog/building-serverless-
microservices-in-azure-sample-architecture/.

[5] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian,

V., Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A., et al.

Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing. Springer, 2017, pp. 1–20.

[6] Cadden, J., Unger, T., Awad, Y., Dong, H., Krieger, O., and Appavoo,

J. SEUSS: skip redundant paths to make serverless fast. In Proceedings
of the Fifteenth European Conference on Computer Systems (2020), pp. 1–
15.

[7] Caruana, R., and Niculescu-Mizil, A. An empirical comparison of

supervised learning algorithms. In Proceedings of the 23rd International
Conference on Machine Learning (2006), pp. 161–168.

[8] Carver, B., Zhang, J., Wang, A., Anwar, A., Wu, P., and Cheng, Y.

Wukong: a scalable and locality-enhanced framework for serverless

parallel computing. In Proceedings of the 11th ACM Symposium on
Cloud Computing (2020), pp. 1–15.

[9] Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A. Server-

less programming (function as a service). In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS) (2017),
IEEE, pp. 2658–2659.

[10] Chen, S., Delimitrou, C., and Martínez, J. F. PARTIES: QoS-aware

resource partitioning for multiple interactive services. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,

2019), ASPLOS ’19, Association for Computing Machinery, p. 107–120.

[11] Cloud, G. App Engine application platform. https://cloud.google.com/
appengine, 2020.

[12] Du, D., Yu, T., Xia, Y., Zang, B., Yan, G., Qin, C., Wu, Q., and Chen,

H. Catalyzer: Sub-millisecond startup for serverless computing with

initialization-less booting. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (2020), pp. 467–481.

[13] Ellis, A. OpenFaas: Serverless functions, made simple. https://www.
openfaas.com/.

[14] Fingler, H., Akshintala, A., and Rossbach, C. J. Usetl: Unikernels

for serverless extract transform and load why should you settle for

less? In Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems (2019), pp. 23–30.

[15] Open source, Kubernetes-native serverless framework. https://fission.
io/.

[16] google. cadvisor. https://github.com/google/cadvisor, 2021.
[17] Grafana: The open observability platform.

[18] Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J.,

Sreekanti, V., Tumanov, A., and Wu, C. Serverless computing: One

step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).
[19] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V.,

Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. Serverless com-

putation with OpenLambda. In 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 16) (Denver, CO, June 2016), USENIX
Association.

[20] Hendrix, R. W. Google Cloud Functions. https://cloud.google.com/
functions.

[21] Hendrix, R. W. Amazon Lambda. https://aws.amazon.com/lambda/,
1983.

[22] Hunhoff, E., Irshad, S., Thurimella, V., Tariq, A., and Rozner, E.

Proactive serverless function resource management. In Proceedings of
the 2020 Sixth International Workshop on Serverless Computing (New

York, NY, USA, 2020), WoSC’20, Association for Computing Machinery,

p. 61–66.

[23] Jia, Z., and Witchel, E. Nightcore: efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (2021), pp. 152–166.

[24] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal,

A., Pu, Q., Shankar, V., Carreira, J., Krauth, K., Yadwadkar, N.,

et al. Cloud programming simplified: A berkeley view on serverless

computing. arXiv preprint arXiv:1902.03383 (2019).
[25] Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Centralized core-

granular scheduling for serverless functions. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC 2019) (2019), pp. 158–164.

[26] Kannan, R. S., Subramanian, L., Raju, A., Ahn, J., Mars, J., and Tang,

L. GrandSLAm: Guaranteeing SLAs for jobs in microservices execution

frameworks. In Proceedings of the Fourteenth EuroSys Conference 2019
(New York, NY, USA, 2019), EuroSys ’19, Association for Computing

Machinery.

[27] Kanso, A., and Youssef, A. Serverless: beyond the cloud. In Proceed-
ings of the 2nd International Workshop on Serverless Computing (2017),

pp. 6–10.

[28] Khatri, D., Khatri, S. K., and Mishra, D. Potential bottleneck and

measuring performance of serverless computing: A literature study.

In 2020 8th International Conference on Reliability, Infocom Technolo-
gies and Optimization (Trends and Future Directions) (ICRITO) (2020),
pp. 161–164.

[29] Knative. https://knative.dev/, 2021.
[30] Kubeless: The Kubernetes native serverless environment. https://

kubeless.io/.
[31] Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., and

Kozyrakis, C. Heracles: Improving resource efficiency at scale. In

2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA) (2015), pp. 450–462.

[32] McGrath, G., and Brenner, P. R. Serverless computing: Design,

implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW)
(2017), IEEE, pp. 405–410.

[33] Architecture: Scalable commerce workloads using microservices.

https://cloud.google.com/solutions/architecture/scaling-commerce-
workloads-architecture.

[34] Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., and

Sukhomlinov, V. Agile cold starts for scalable serverless. In 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19)
(2019).

[35] Mvondo, D., Bacou, M., Nguetchouang, K., Ngale, L., Pouget, S.,

Kouam, J., Lachaize, R., Hwang, J., Wood, T., Hagimont, D., et al.

OFC: an opportunistic caching system for FaaS platforms. In Proceed-
ings of the Sixteenth European Conference on Computer Systems (2021),
pp. 228–244.

[36] Nuclio: Automate the data science pipeline with serverless functions.

https://nuclio.io/, 2017.
[37] Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau,

A., and Arpaci-Dusseau, R. SOCK: Rapid task provisioning with

serverless-optimized containers. In 2018 Usenix Annual Technical
Conference (USENIX ATC ’18) (2018), pp. 57–70.

[38] Patel, T., and Tiwari, D. Clite: Efficient and QoS-aware co-location

of multiple latency-critical jobs for warehouse scale computers. In

13

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverlessmicroservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverlessmicroservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverlessmicroservices.html
https://azure.microsoft.com/is-is/blog/building-serverless-microservices-in-azure-sample-architecture/
https://azure.microsoft.com/is-is/blog/building-serverless-microservices-in-azure-sample-architecture/
https://cloud.google.com/appengine
https://cloud.google.com/appengine
https://www.openfaas.com/
https://www.openfaas.com/
https://fission.io/
https://fission.io/
https://github.com/google/cadvisor
https://cloud.google.com/functions
https://cloud.google.com/functions
https://aws.amazon.com/lambda/
https://knative.dev/
https://kubeless.io/
https://kubeless.io/
https://cloud.google.com/solutions/architecture/scaling-commerce-workloads-architecture
https://cloud.google.com/solutions/architecture/scaling-commerce-workloads-architecture
 https://nuclio.io/

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA) (2020), IEEE, pp. 193–206.

[39] Pérez, A., Moltó, G., Caballer, M., and Calatrava, A. Server-

less computing for container-based architectures. Future Generation
Computer Systems 83 (2018), 50–59.

[40] Qiu, H., Banerjee, S. S., Jha, S., Kalbarczyk, Z. T., and Iyer, R. K.

FIRM: An intelligent fine-grained resourcemanagement framework for

SLO-oriented microservices. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20) (Nov. 2020), USENIX
Association, pp. 805–825.

[41] Rajan, R. A. P. Serverless architecture - a revolution in cloud comput-

ing. In 2018 Tenth International Conference on Advanced Computing
(ICoAC) (2018), pp. 88–93.

[42] Shafiei, H., Khonsari, A., and Mousavi, P. Serverless computing: A

survey of opportunities, challenges and applications, 2019.

[43] Shafiei, H., Khonsari, A., and Mousavi, P. Serverless computing: A

survey of opportunities, challenges and applications. arXiv preprint
arXiv:1911.01296 (2019).

[44] Shahrad, M. FaaSProfiler: A tool for testing and profiling Function-as-

a-Service platforms. http://parallel.princeton.edu/FaaSProfiler.html,
2019.

[45] Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P., Cooke,

J., Laureano, E., Tresness, C., Russinovich, M., and Bianchini, R.

Serverless in the wild: Characterizing and optimizing the serverless

workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20) (July 2020), USENIX Association, pp. 205–

218.

[46] Silva, P., Fireman, D., and Pereira, T. E. Prebaking functions to

warm the serverless cold start. In Proceedings of the 21st International
Middleware Conference (2020), pp. 1–13.

[47] Singhvi, A., Houck, K., Balasubramanian, A., Shaikh, M. D.,

Venkataraman, S., and Akella, A. Archipelago: A scalable low-

latency serverless platform, 2019.

[48] Suresh, A., and Gandhi, A. FnSched: An efficient scheduler for

serverless functions. In Proceedings of the 5th International Work-
shop on Serverless Computing (New York, NY, USA, 2019), WOSC ’19,

Association for Computing Machinery, p. 19–24.

[49] Tariq, A., Pahl, A., Nimmagadda, S., Rozner, E., and Lanka, S. Se-

quoia: Enabling Quality-of-Service in serverless computing. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (New York,

NY, USA, 2020), SoCC ’20, Association for Computing Machinery,

p. 311–327.

[50] Vahidinia, P., Farahani, B., and Aliee, F. S. Cold start in serverless

computing: Current trends and mitigation strategies. In 2020 Inter-
national Conference on Omni-layer Intelligent Systems (COINS) (2020),
pp. 1–7.

[51] Open source serverless cloud platform. https://openwhisk.apache.org/.
[52] Wu, M., Mi, Z., and Xia, Y. A survey on serverless computing and

its implications for jointcloud computing. In 2020 IEEE International
Conference on Joint Cloud Computing (2020), pp. 94–101.

[53] Yanqi, Z., Weizhe, H., Zhuangzhuang, Z., G. Edward, S., and

Christina, D. Sinan: ML-based & QoS-aware resource management

for cloud microservices. In Proceedings of the Twenty-Sixth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (2021), ASPLOS ’21.

[54] Yu, T., Liu, Q., Du, D., Xia, Y., Zang, B., Lu, Z., Yang, P., Qin, C., and

Chen, H. Characterizing serverless platforms with serverlessbench. In

Proceedings of the ACM Symposium on Cloud Computing (2020), SoCC

’20, Association for Computing Machinery.

A Project Source Code
The source code for the project is publicly available at: https:
//github.com/James-QiuHaoran/openwhisk

B Detailed Discussion

It is worth mentioning that the cold-start is controlled by

the docker daemon, and docker daemon uses docker run to

create a new runtime container. Initialization process exe-

cutes inside the created container, so it is influenced by the

CPU-share. In the OpenWhisk design, the Node.js runtime

container works as a server, which has two end points, /init
and /run. In the initialization phase, the invoker will send a

binary of the user function as a message to the runtime con-

tainer’s /init end-point. The runtime container will unzip

the user function, store it locally and set up a handler for this

user function. If there is a request, the invoker will send the

parameter as a message to the runtime container’s /run end-
point. The container will execute it and return the results

back to the controller. In a running invoker, there are two

kinds of container running: invoker container and runtime

containers. Invoker container uses the default CPU-share:

1024. Runtime containers use the CPU-share that we assign

to them ranging from 128 - 1024. When we increase the run-

time containers’ CPU-share, runtime containers will "steal"

more CPU time from the invoker. More CPU time means

better performance, so the average initialization time and

execution time decrease when we set a higher CPU-share for

runtime containers. Moreoever, it is worth mentioning that

changing CPU-share has different effects on the multi-node

cluster and single-node cluster. On the multi-node cluster, it

impacts the cold-start time, initialization time and execution

time. This is because, the larger the memory limit, the less

concurrent containers will run in each invoker, and thus, the

more CPU shares each container can use. This leads to faster

cold-start, initialization time, execution time on the cluster.

On the other hand, on a single node, the controller, invoker

and runtime container are running concurrently (say with

a CPU share of 1024, 1024 and 128 each). Thus, when these

processes run concurrently, the runtime container is only

bound to get 128/(1024+1024+128) share of the CPU, and

hence the CPU-share impacts the latencies for single-node

system.

C Additional Benchmarking Results

We present additional benchmarking results in the appendix

section, due to the page limits. It includes the profiling results

for base64 benchmark at rate 20, 30, 40, 50 in the single-node

OpenWhisk cluster (refer to Figure 10, 11, 12, and 13). It also

includes the profiling result comparison among different

benchmarks (i.e., the base64, json and primes benchmark) on

the multi-node (1-master and 9-invoker) OpenWhisk cluster

(refer to Figure 14, 15, and 16).

We also show an example of the result of our online moni-

toring and visualization system in Figure 17. We demonstrate

the CPU and memory usage traces of selected containers

and processes including container daemon, docker daemon,

14

http://parallel.princeton.edu/FaaSProfiler.html
https://openwhisk.apache.org/
https://github.com/James-QiuHaoran/openwhisk
https://github.com/James-QiuHaoran/openwhisk

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

invoker container and runtime containers during a test
6
.

From Figure 17-(a)&(b), we can clearly find the peak CPU

usage and peak memory usage of each container. We can

also find the relative CPU usage among different containers.

In Figure 17-(c), we show the latency breakdowns of function

invocations during a run-time container’s life time. we can

find there are in total three function invocations assigned

to this runtime container. X-axis is the timeline and y-axis

indicates the event index which can be mapped back to the

event name with the list in Sec. 4.2. The blue line represents

the latency breakdown of the very first invocation assigned

to this container, so it will wait for the finish of cold start. We

can clearly find the duration from 4
𝑡ℎ

to 5
𝑡ℎ

events which is

the cold start time dominates the whole end-to-end latency

of this function invocation. The green line represents the

latency breakdown of a warm start invocation. We can find

it still suffers from long latency because it arrives right after

the first invocation and is queued until the previous invoca-

tion (the blue line) finishes the execution. The orange line

represents the latency breakdown of a warm start which is

assigned to the container when the cold start has finished.

We can find the total latency of this invocation is short be-

cause it does not need to wait for cold start or be queued due

to cold start. In summary, we can use the visualization to

confirm our assumption that the cold start is the root cause

of long end-to-end latency.

6
The CPU-share is set to 512; The memory limitation varies from 320 to 512

with step size 64; We use primes as the workload; The invocation rate is 10

invocations per second; The invocation distribution is uniform distribution;

The invocation duration is 5 seconds

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

5081.9 5911.1 6116.9 6137.5 6151.7 6087.0 6255.1 5910.6

6407.4 5978.4 6109.5 6162.7 5800.5 5904.8 5949.8 5801.4

6288.8 5971.8 5916.0 6150.0 6397.7 6077.4 6030.0 5925.2

6722.8 6287.3 6245.3 6298.2 6303.1 6339.1 6783.8 6497.5

7540.1 7205.7 7592.4 7848.0 7369.6 7124.2 7305.4 7327.6

Wait Time for Warm Start Invocations

5500

6000

6500

7000

7500

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1162.1 1912.1 2059.1 2090.5 2123.6 2039.1 2177.9 1999.4

2036.7 1653.3 1727.7 1870.5 1527.3 1571.5 1581.0 1503.8

1591.8 1358.2 1320.0 1481.6 1663.8 1360.0 1342.0 1298.6

1458.5 1103.8 1136.5 1117.8 1135.0 1230.8 1420.2 1285.8

1182.7 1032.3 1243.0 1486.0 1177.0 982.7 1177.0 1113.3

Wait Time for Cold Start Inovcations

1000

1200

1400

1600

1800

2000

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

265.1 372.8 376.6 354.9 386.8 377.8 356.0 345.1

381.8 375.3 391.3 289.8 338.2 364.5 368.5 327.2

364.8 367.8 230.2 342.0 380.4 363.8 364.8 317.4

252.2 251.0 193.2 303.2 255.5 249.5 368.8 308.0

370.0 133.7 368.0 408.7 211.7 218.3 211.3 286.3

Init Time for Cold Start Invocations

150

200

250

300

350

400

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

926.5 923.8 929.4 949.6 941.5 932.9 910.9 906.0

742.8 730.5 759.7 733.0 727.7 746.7 743.2 727.5

648.6 646.8 699.4 658.2 688.2 635.6 652.6 635.0

594.8 597.2 575.0 560.8 587.0 614.0 616.5 598.5

547.7 531.3 574.7 549.0 521.3 508.3 518.3 523.0

Execution Time for Cold Start Invocations

550

600

650

700

750

800

850

900

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

6064.7 6884.9 7104.5 7134.6 7126.1 7070.3 7250.0 6879.7

7187.7 6744.2 6878.1 6938.9 6564.5 6671.2 6723.1 6568.9

6965.5 6641.9 6594.2 6824.6 7074.8 6754.1 6704.6 6600.8

7317.8 6874.3 6831.9 6880.9 6889.5 6917.2 7372.0 7085.8

8044.9 7710.6 8094.0 8350.6 7872.5 7622.3 7804.8 7827.4

E2E Latency for Warm Start Inovcations

6500

7000

7500

8000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

2353.8 3208.6 3365.1 3395.0 3451.9 3349.8 3444.8 3250.5

3161.3 2759.2 2878.7 2893.3 2593.2 2682.7 2692.7 2558.5

2605.2 2372.8 2249.6 2481.8 2732.4 2359.4 2359.4 2251.0

2305.5 1952.0 1904.8 1981.8 1977.5 2094.2 2405.5 2192.2

2100.3 1697.3 2185.7 2443.7 1910.0 1709.3 1906.7 1922.7

E2E Latency for Cold Start Inovcations

1800

2000

2200

2400

2600

2800

3000

3200

3400

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 10. Profiling of base64 benchmark on a single-node cluster with invocation rate=20.

15

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

8763.6 8882.0 9982.1 9765.9 9450.7 9989.4 9699.9 9509.1

10157.1 9890.1 9526.6 9569.3 9537.2 9659.2 9431.6 9668.6

10370.3 10491.5 10172.1 10015.6 10608.9 9953.4 10481.2 10320.1

10241.8 10742.9 10416.2 10319.5 10248.7 10618.7 10431.7 10191.2

11963.1 11375.1 11619.4 11626.7 11680.8 11562.2 11656.9 11852.8

Wait Time for Warm Start Invocations

9000

9500

10000

10500

11000

11500

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

890.2 926.0 1796.0 1675.6 1412.2 1669.0 1757.0 1678.0

2107.6 1728.0 1490.8 1532.2 1576.8 1559.6 1449.0 1714.8

1483.0 1142.5 1383.2 1269.5 1704.2 1164.0 1488.5 1369.0

1345.8 1768.8 1547.5 1363.2 1392.5 1650.2 1597.2 1104.5

1622.3 1004.3 1259.3 1076.7 1157.7 1134.0 1093.3 1170.7

Wait Time for Cold Start Inovcations

1000

1200

1400

1600

1800

2000

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

251.0 300.4 282.2 361.6 280.2 344.8 280.2 229.2

274.6 380.4 320.2 369.8 286.0 323.8 271.6 243.2

194.2 247.2 251.0 303.5 253.8 254.2 367.8 358.8

252.8 250.2 311.8 367.2 311.8 371.0 192.5 304.2

139.3 137.0 209.0 286.3 294.3 283.3 284.7 380.0

Init Time for Cold Start Invocations

150

200

250

300

350

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

704.6 691.4 709.6 676.0 653.8 781.2 658.2 640.6

695.0 675.6 656.2 664.8 692.6 651.4 668.8 678.2

571.2 571.0 623.8 580.0 604.0 631.8 625.2 617.0

611.8 617.0 608.2 653.8 618.8 596.5 607.5 617.5

552.3 530.0 542.7 546.0 539.3 522.0 564.3 556.3

Execution Time for Cold Start Invocations

550

600

650

700

750

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

9429.4 9553.8 10661.0 10438.4 10128.5 10670.4 10370.7 10172.5

10831.3 10564.8 10202.8 10237.1 10208.1 10338.6 10103.4 10343.4

10958.0 11106.7 10750.8 10591.6 11193.0 10530.9 11065.1 10903.5

10829.0 11334.4 10997.6 10898.6 10825.9 11202.0 11013.2 10784.3

12466.1 11879.0 12118.7 12130.5 12181.7 12063.7 12159.2 12356.5

E2E Latency for Warm Start Inovcations

9500

10000

10500

11000

11500

12000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1845.8 1917.8 2787.8 2713.2 2346.2 2795.0 2695.4 2547.8

3077.2 2784.0 2467.2 2566.8 2555.4 2534.8 2389.4 2636.2

2248.5 1960.8 2258.0 2153.0 2562.0 2050.0 2481.5 2344.8

2210.2 2636.0 2467.5 2384.2 2323.0 2617.8 2397.2 2026.2

2314.0 1671.3 2011.0 1909.0 1991.3 1939.3 1942.3 2107.0

E2E Latency for Cold Start Inovcations

1800

2000

2200

2400

2600

2800

3000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 11. Profiling of base64 benchmark on a single-node cluster with invocation rate=30.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

12288.5 12319.1 13034.7 12764.4 13236.4 12914.9 12891.7 12759.7

13575.2 13302.3 13206.9 13150.2 13170.9 12937.9 13112.2 13180.9

14039.9 14131.3 14372.3 13814.0 14311.1 13804.2 13920.8 13909.7

13977.5 14325.9 14059.4 13847.7 14188.0 13929.4 14152.4 14260.0

16516.8 15703.0 15762.7 15857.9 15599.3 15913.1 15979.7 15727.5

Wait Time for Warm Start Invocations

12500

13000

13500

14000

14500

15000

15500

16000

16500

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

880.0 892.0 1765.0 1412.4 1775.2 1341.0 1557.6 1375.4

2132.8 1840.6 1685.6 1677.6 1677.4 1534.0 1703.8 1720.0

1379.5 1307.5 1723.8 1207.0 1609.0 1382.5 1477.5 1264.0

1485.8 1719.8 1377.8 1331.8 1345.0 1209.0 1464.8 1542.8

1841.3 1166.7 1097.7 1152.3 1153.3 1252.0 1166.7 1319.3

Wait Time for Cold Start Inovcations

1000

1200

1400

1600

1800

2000

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512
M

em
or

y
Si

ze

202.2 291.0 278.2 280.0 274.4 317.0 313.8 277.2

321.6 317.6 338.6 334.4 271.6 322.0 278.2 320.4

381.2 303.2 193.5 256.0 193.5 200.5 197.0 362.5

262.5 375.2 386.5 302.8 393.0 245.5 254.0 362.2

281.3 215.7 279.7 376.3 283.3 376.0 401.3 212.3

Init Time for Cold Start Invocations

200

225

250

275

300

325

350

375

400

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

752.8 713.8 698.8 665.0 659.0 671.0 658.4 647.4

660.6 657.6 684.0 679.4 687.6 650.2 672.6 660.8

597.5 603.0 610.2 597.0 591.2 610.5 626.0 641.5

608.5 601.0 613.5 594.8 650.8 596.8 614.0 571.0

554.0 515.7 559.3 547.3 515.7 548.3 622.0 531.3

Execution Time for Cold Start Invocations

550

600

650

700

750

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

12961.6 12993.8 13698.9 13433.5 13912.7 13591.8 13562.0 13432.8

14255.4 13978.3 13883.4 13823.5 13848.5 13609.8 13786.6 13856.4

14626.7 14726.6 14960.9 14402.8 14903.1 14383.5 14500.8 14494.3

14558.8 14910.5 14644.9 14429.3 14777.1 14521.5 14738.3 14846.9

17019.0 16201.4 16263.6 16359.8 16095.8 16407.8 16478.9 16223.5

E2E Latency for Warm Start Inovcations

13000

13500

14000

14500

15000

15500

16000

16500

17000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1835.0 1896.8 2742.0 2357.4 2708.6 2329.0 2529.8 2300.0

3115.0 2815.8 2708.2 2691.4 2636.6 2506.2 2654.6 2701.2

2358.2 2213.8 2527.5 2060.0 2393.8 2193.5 2300.5 2268.0

2356.8 2696.0 2377.8 2229.2 2388.8 2051.2 2332.8 2476.0

2676.7 1898.0 1936.7 2076.0 1952.3 2176.3 2190.0 2063.0

E2E Latency for Cold Start Inovcations

2000

2200

2400

2600

2800

3000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 12. Profiling of base64 benchmark on a single-node cluster with rate=40.

16

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

15681.4 15814.0 16686.4 16374.1 16455.5 16482.0 16487.4 16518.2

16926.9 16598.9 16220.8 16666.8 16293.3 16471.9 16262.1 16570.7

17649.0 17648.5 17808.1 17729.5 17946.8 17742.2 17598.4 17319.1

17264.3 17986.3 17071.5 17871.3 17579.7 17577.1 17365.6 18055.8

20418.9 19828.7 20418.3 20332.2 20061.4 19806.9 20162.1 20204.4

Wait Time for Warm Start Invocations

16000

17000

18000

19000

20000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1000.6 923.2 1810.2 1648.6 1717.4 1609.2 1608.6 1638.8

2140.4 1697.0 1542.4 1841.0 1352.6 1538.4 1679.2 1493.2

1595.0 1367.2 1397.8 1317.8 1508.8 1443.2 1303.0 1271.0

1247.0 1492.5 1124.5 1673.8 1331.0 1381.0 1279.8 1615.5

1466.3 1065.0 1307.7 1196.0 1328.3 1016.7 1213.3 1171.7

Wait Time for Cold Start Inovcations

1000

1200

1400

1600

1800

2000

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

253.2 302.0 324.4 333.4 277.2 374.0 315.6 365.6

278.0 326.6 370.8 330.6 366.8 280.0 320.4 272.2

252.8 390.2 368.0 303.2 369.8 381.0 308.0 314.5

251.8 371.0 306.0 252.8 308.8 250.8 245.8 395.8

299.3 221.3 373.3 394.7 138.3 288.3 302.7 365.7

Init Time for Cold Start Invocations

150

200

250

300

350

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

686.8 686.0 671.4 691.8 665.6 669.4 641.0 642.4

655.0 629.0 693.0 651.2 659.4 679.8 667.0 676.8

592.2 621.0 596.2 599.5 642.0 612.2 649.0 612.5

641.8 623.8 588.5 627.5 586.2 647.8 593.0 661.0

540.3 540.3 543.0 569.7 560.3 576.7 551.7 536.7

Execution Time for Cold Start Invocations

540

560

580

600

620

640

660

680

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

16351.8 16487.9 17361.6 17040.3 17123.0 17155.3 17163.9 17187.6

17601.2 17276.4 16884.8 17337.4 16968.6 17146.7 16925.6 17254.7

18228.4 18229.3 18394.9 18319.1 18530.7 18323.7 18180.3 17895.0

17839.8 18573.9 17648.1 18452.8 18162.5 18157.2 17944.2 18637.9

20921.9 20329.8 20922.7 20831.9 20563.5 20305.0 20664.3 20705.5

E2E Latency for Warm Start Inovcations

17000

18000

19000

20000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1940.6 1911.2 2806.0 2673.8 2660.2 2652.6 2565.2 2646.8

3073.4 2652.6 2606.2 2822.8 2378.8 2498.2 2666.6 2442.2

2440.0 2378.5 2362.0 2220.5 2520.5 2436.5 2260.0 2198.0

2140.5 2487.2 2019.0 2554.0 2226.0 2279.5 2118.5 2672.2

2306.0 1826.7 2224.0 2160.3 2027.0 1881.7 2067.7 2074.0

E2E Latency for Cold Start Inovcations

2000

2200

2400

2600

2800

3000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 13. Profiling of base64 benchmark on a single-node cluster with invocation rate=50.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3975.1 6039.5 6151.5 5729.2 5658.3 5196.2 4742.3 4466.0

4398.7 4086.9 4110.2 4067.4 4739.5 4479.0 4465.0 4292.2

3488.5 3712.9 3488.1 4259.9 4409.1 3479.2 4127.1 3810.0

2695.0 2531.9 2497.9 2476.9 2687.4 2633.8 2527.8 2557.8

2172.7 1791.6 1893.0 1906.7 2364.6 1790.2 1807.5 1866.5

Wait Time for Warm Start Invocations

2000

2500

3000

3500

4000

4500

5000

5500

6000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3237.0 4517.9 4209.2 4398.7 4393.0 4518.4 4901.8 4910.1

4171.4 3631.1 3652.6 3675.8 3515.1 3621.9 3481.4 3677.5

3333.8 3212.1 3105.5 3458.8 3475.5 3125.8 3397.3 3312.7

2694.2 2422.4 2492.4 2414.9 2626.0 2505.2 2480.1 2483.1

2066.0 1873.0 1890.1 1893.3 2081.5 1849.1 1869.5 1868.5

Wait Time for Cold Start Inovcations

2000

2500

3000

3500

4000

4500

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512
M

em
or

y
Si

ze

2000.9 2538.9 2810.3 2615.5 2397.1 2190.0 1752.7 1585.7

1596.9 1649.3 1724.5 1662.5 1897.9 1767.1 1795.1 1713.6

1477.3 1626.6 1534.5 1704.3 1709.1 1414.2 1539.5 1460.8

1153.0 938.9 1067.9 954.8 1002.3 958.6 970.6 945.9

916.5 835.7 829.7 840.6 906.6 819.5 804.1 828.7

Init Time for Cold Start Invocations

1000

1250

1500

1750

2000

2250

2500

2750

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1827.6 1836.2 1758.2 1788.2 1877.2 1662.7 1459.6 1195.7

1310.5 1375.0 1392.3 1353.2 1564.7 1518.3 1531.0 1413.9

1077.0 1147.7 1159.8 1291.4 1300.2 1110.7 1235.6 1249.4

837.6 918.7 872.4 938.4 901.1 919.6 907.0 911.7

671.4 599.0 622.4 612.9 684.7 606.9 637.6 636.6

Execution Time for Cold Start Invocations

600

800

1000

1200

1400

1600

1800

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

5077.6 7111.1 7251.0 6834.2 6831.7 6449.3 6061.7 5707.6

5187.5 4874.7 4886.8 4873.9 5593.3 5362.5 5335.2 5137.3

4134.5 4411.9 4199.3 5072.3 5157.9 4162.3 4878.0 4578.9

3241.3 3104.5 3045.1 3057.4 3263.4 3192.9 3092.3 3129.9

2608.1 2222.7 2325.6 2337.4 2820.8 2229.1 2234.6 2295.5

E2E Latency for Warm Start Inovcations

3000

4000

5000

6000

7000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

7065.4 8893.0 8777.7 8802.4 8667.3 8371.1 8114.0 7691.5

7078.8 6655.4 6769.4 6691.6 6977.7 6907.2 6807.5 6805.0

5888.1 5986.4 5799.8 6454.5 6484.8 5650.6 6172.4 6022.8

4684.8 4280.0 4432.8 4308.0 4529.4 4383.4 4357.7 4340.7

3654.0 3307.7 3342.1 3346.8 3672.9 3275.5 3311.2 3333.7

E2E Latency for Cold Start Inovcations

4000

5000

6000

7000

8000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 14. Profiling of base64 benchmark on multi-node cluster with invocation rate=30.

17

Conference’17, July 2017, Washington, DC, USA Haoran Qiu, Beitong Tian, Ragini Gupta

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1919.3 4461.9 4168.3 4360.1 3429.0 3992.0 3471.9 3246.4

3339.9 2735.8 2669.4 2603.4 2831.8 2727.9 2705.6 2548.1

2582.3 2106.3 2048.0 2151.8 2083.4 2020.8 2244.2 2360.0

1935.7 1716.1 1558.6 1639.2 1526.0 1534.7 1483.1 1658.2

1178.7 948.3 1093.3 1025.7 1037.4 1008.2 965.5 1059.8

Wait Time for Warm Start Invocations

1000

1500

2000

2500

3000

3500

4000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3207.2 4864.4 4501.1 4495.2 4295.8 4632.5 4546.4 4618.6

4066.1 3671.1 3663.8 3702.9 3578.2 3668.9 3577.8 3532.6

3539.5 3018.6 3113.1 3135.1 3082.8 3241.9 3224.5 3090.6

2689.1 2656.5 2501.1 2620.1 2423.3 2468.3 2491.3 2538.6

2026.3 1807.3 1839.2 1858.2 1810.6 1858.5 1862.1 1855.7

Wait Time for Cold Start Inovcations

2000

2500

3000

3500

4000

4500

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

1942.8 2124.9 2293.5 2458.6 2167.2 2058.6 1955.2 1520.0

1614.7 1558.0 1594.4 1589.9 1608.1 1601.1 1662.3 1618.8

1385.5 1396.0 1370.8 1330.2 1289.3 1309.2 1299.0 1364.7

1108.7 996.6 995.6 933.6 921.5 999.6 919.1 1075.3

831.1 834.2 853.8 836.9 815.9 797.3 813.2 812.8

Init Time for Cold Start Invocations

800

1000

1200

1400

1600

1800

2000

2200

2400

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

532.0 474.1 495.1 468.4 446.4 471.0 462.2 451.7

372.9 363.1 340.6 354.7 384.7 336.7 388.0 361.3

311.8 318.1 312.5 331.4 325.2 292.3 314.9 335.9

352.1 312.2 319.1 302.9 318.1 303.9 314.5 351.6

204.1 198.2 255.7 203.3 218.5 242.8 212.1 254.0

Execution Time for Cold Start Invocations

200

250

300

350

400

450

500

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

2497.4 5094.8 4808.7 4970.4 4274.0 4672.7 4172.5 3908.6

3738.8 3158.9 3072.0 3024.9 3263.6 3149.6 3118.9 2999.3

2914.3 2431.2 2355.8 2477.9 2431.7 2361.0 2595.4 2683.1

2262.4 2019.0 1855.6 1951.8 1843.0 1833.2 1789.1 1998.1

1401.7 1161.8 1321.4 1238.1 1251.9 1220.9 1164.0 1277.7

E2E Latency for Warm Start Inovcations

1500

2000

2500

3000

3500

4000

4500

5000

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

5681.9 7463.4 7289.7 7422.3 6909.4 7162.1 6963.8 6590.3

6053.8 5592.2 5598.7 5647.6 5571.0 5606.7 5628.1 5512.7

5236.8 4732.7 4796.4 4796.7 4697.3 4843.4 4838.4 4791.3

4149.9 3965.2 3815.8 3856.6 3662.9 3771.8 3724.9 3965.5

3061.5 2839.7 2948.7 2898.4 2845.0 2898.6 2887.4 2922.5

E2E Latency for Cold Start Inovcations

3000

4000

5000

6000

7000

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 15. Profiling of primes benchmark on multi-node cluster with invocation rate=30.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

507.2 3324.5 2904.0 3497.3 2256.0 2656.6 2526.8 1990.1

1724.5 1299.9 1449.8 1396.4 1469.3 1373.8 1476.7 1233.0

1059.4 939.7 1653.2 964.7 1119.3 995.8 1016.8 921.5

908.6 815.8 920.6 818.8 814.7 820.1 779.2 882.1

783.0 705.8 775.3 671.8 674.2 671.2 764.2 774.7

Wait Time for Warm Start Invocations

1000

1500

2000

2500

3000

Tim
e (m

s)

(a) Avg. wait time (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

3037.5 4572.4 4612.6 4537.8 4524.0 5029.6 4413.3 4525.2

4147.0 3714.1 3959.9 3764.0 3627.6 3621.8 3733.1 3952.2

3281.1 3181.4 3421.4 3131.2 3170.4 3124.7 3117.3 3198.1

2750.6 2531.3 2536.0 2503.8 2483.5 2560.0 2471.8 2547.6

2052.8 1860.1 2195.5 1914.8 1913.3 2036.7 1970.3 1998.9

Wait Time for Cold Start Inovcations

2000

2500

3000

3500

4000

4500

5000

Tim
e (m

s)

(b) Avg. wait time (cold)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512
M

em
or

y
Si

ze

1444.2 2296.2 2041.1 1998.0 1489.6 1474.0 1313.7 1188.6

1130.8 1270.9 1160.7 1215.0 1306.7 1100.5 1257.0 1063.4

1017.6 1097.1 1271.7 1008.6 1052.3 1052.7 1055.7 902.6

975.2 908.5 999.2 894.8 947.2 845.6 877.2 876.7

805.2 812.1 807.3 830.7 791.9 805.6 817.4 852.3

Init Time for Cold Start Invocations

800

1000

1200

1400

1600

1800

2000

2200

Tim
e (m

s)

(c) Avg. init time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

50.2 42.4 47.7 83.3 82.0 69.7 101.8 58.1

34.9 35.9 47.5 34.7 41.6 48.7 46.2 53.0

32.5 29.5 32.2 35.1 33.4 33.9 35.5 32.0

28.3 31.1 25.4 30.9 28.4 29.1 33.1 33.6

20.9 18.0 21.0 20.7 21.6 24.1 18.7 22.6

Execution Time for Cold Start Invocations

20

30

40

50

60

70

80

90

100

Tim
e (m

s)

(d) Avg. execution time

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

590.7 3394.7 2966.0 3629.4 2345.8 2745.5 2680.1 2067.5

1759.6 1335.6 1477.5 1432.3 1506.9 1461.3 1526.6 1273.1

1088.7 964.6 1681.4 990.3 1153.4 1026.9 1053.7 965.2

936.2 834.8 935.3 835.5 837.1 837.2 801.9 909.6

795.7 717.1 785.0 683.8 684.1 683.7 773.6 789.0

E2E Latency for Warm Start Inovcations

1000

1500

2000

2500

3000

3500

Tim
e (m

s)

(e) Avg. e2e latency (warm)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

CPU Share

256

320

384

448

512

M
em

or
y

Si
ze

4531.8 6911.1 6701.5 6619.1 6095.6 6573.3 5828.8 5771.9

5312.7 5020.9 5168.1 5013.7 4975.9 4771.0 5036.4 5068.6

4331.2 4308.0 4725.3 4174.9 4256.2 4211.3 4208.4 4132.7

3754.1 3470.9 3560.6 3429.5 3459.1 3434.7 3382.1 3457.9

2878.9 2690.1 3023.9 2766.2 2726.8 2866.4 2806.4 2873.9

E2E Latency for Cold Start Inovcations

3000

3500

4000

4500

5000

5500

6000

6500

Tim
e (m

s)

(f) Avg. e2e latency (cold)

Figure 16. Profiling of json benchmark on multi-node cluster with invocation rate=30.

18

Providing Performance SLO Guarantees for Multi-tenant Serverless Computing Conference’17, July 2017, Washington, DC, USA

(a) CPU utilization of different containers

(b) Memory utilization of different containers

(c) Latency breakdowns of function invocations in one container

Figure 17. Examples (screenshots) of the CPU usage, Memory usage, latency breakdown visualization.

19

	Abstract
	1 Introduction
	1.1 Serverless Computing Architecture and Workflow
	1.2 Life Cycle of a Function Container in OpenWhisk
	1.3 Motivation and Problem Statement
	1.4 Challenges

	2 Approach Overview
	2.1 Application Controller
	2.2 Central Resource Manager

	3 Benchmark Profiling Results
	3.1 Container Size
	3.2 Horizontal Concurrency
	3.3 Vertical Concurrency

	4 Monitoring Infrastructure
	4.1 Online Visualization Platform
	4.2 End-to-end Latency Modelling

	5 Evaluation Results
	5.1 Evaluation Setup
	5.2 Per-Application Resource Controller
	5.3 Per-System-Pool Resource Manager

	6 Discussion and Limitations
	7 Related Work
	7.1 Serverless Computing Platforms
	7.2 Function Scheduling in Serverless Computing Platforms
	7.3 QoS-Aware Resource Management in Microservices
	7.4 Cold Start Management
	7.5 Other Optimization Techniques

	8 Conclusion and Future Work
	References
	A Project Source Code
	B Detailed Discussion
	C Additional Benchmarking Results

